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1 Introduction

Snow-covered surfaces play an important role in the reflection of solar radiation and
thus contribute to the temperature regulation of the planet. The interaction between
snow and ice, and solar radiation is called snow-albedo feedback (SAF). The SAF cools
the global climate. Snow- and ice-covered areas obtain a high albedo because they are
highly reflective and, therefore, reflect a large amount of the incoming solar radiation.
This cooling effect becomes particularly essential in light of climate change because it
counteracts the rising temperature (Thackeray et al., 2019). However, the cooling effect
has declined during the last decades, especially in the Arctic region due to the enhanced
melting of snow and ice (Flanner et al., 2011). This, in turn, increases the risk of the
irreversible melting of the Greenland ice sheet (GIS). I extend DICE-GIS (Nordhaus,
2019) by integrating SAF and potential tipping of the GIS to calculate the SCC more
precisely, taking into account the reinforcing cycle between the change in the strength of
the SAF, accelerated global warming, and the amplified hazard of tipping.

The fact that the GIS is melting more and more is not only alarming for the Arc-
tic region but the whole planet. The melting of the entire GIS would result in a global
sea level rise of about 7 m (IPCC, 2014; Bamber et al., 2013). This sea level rise is
not restricted to future periods, it is already observable now. The mass loss of the
GIS doubled from 2007 to 2016 relative to the previous decade (IPCC, 2019). Until
2100 the rise in global sea level due to the melting of the GIS is predicted to be 14 to
78 mm under the IPCC’s conservative Representative Concentration Pathway 2.6 scenario
with a limited mean temperature increase of 1.6◦C until 2050 (Fürst et al., 2015; IPCC,
2014). Surface melting causes the major part of the volume loss of the GIS, while the
actual discharge of ice plays a minor role (IPCC, 2019; Fürst et al., 2015; Helsen et al.,
2017). Especially the intensity of summer melting sets new records at ever shorter inter-
vals. Four records alone were set in the last decade in the years 2010, 2012, 2015, and
2019 (Tedesco et al., 2011, 2016b; Tedesco and Fettweis, 2019; Box et al., 2012; Nghiem
et al., 2012).

Global warming not only leads to a decrease in the volume extent of the GIS, but
also to a shrinking snow cover on top of it and thus to a loss of the surface area with
the highest reflectivity, which refers to the so-called darkening of the GIS (Tedesco et al.,
2016a). Besides, various processes decrease the reflectivity of the remaining snow cover
as the temperature rises. For example, the grain size of the snow increases. Furthermore,
there is the formation of liquid water on the ice, called pounding, as well as the expansion
of bare ice areas (Tedesco et al., 2016a, 2011). From 1996 to 2012, the summer season
albedo trend of the GIS was -4% per decade. Future albedo losses exclusively driven by a
warming climate are predicted to be alarmingly high with -15 % in 2100 relative to 2000
(Tedesco et al., 2016a). The decline in albedo is so alarming because it impacts the future
strength of the SAF and thus results in a reinforcing circle and amplified loss of snow and
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ice (Le clec’h et al., 2019).
Besides the concerning increase in global sea level rise, there is the possible threat

that the GIS melts irreversibly after passing a potential tipping point (Robinson et al.,
2012; Ridley et al., 2009). The GIS is currently the largest contributor to sea level rise,
contributing even more than the Antarctic ice sheet (IPCC, 2019). This fact reveals why
the GIS is a highly relevant element for potential tipping. Also, the reinforcing cycle of the
SAF increases the hazard of tipping because the future increase in temperature accelerates.
This, in turn, promotes the melting of the ice sheet and increases the likelihood that the
GIS passes a tipping threshold. Although tipping points are uncertain, a rise in global
atmospheric temperature of 1.5 to 2 ◦C to pre-industrial levels is a serious threat to the
stability of the GIS (IPCC, 2018). More conservative calculations estimate the lower
bound of a serious risk of tipping as low as 1◦C (Calel and Stainforth, 2016). In general,
two processes can cause tipping. First, as the ice melts at the surface, the GIS becomes
thinner and is exposed to higher surface temperatures at lower elevations. This process
is called surface mass balance elevation feedback effect (SMBE feedback). The second
process is the SAF, which causes a higher absorption of solar radiation due to the melting
of snow- and ice-covered surfaces. As a consequence, the surface heats up and accelerates
the melting of the GIS (Pattyn et al., 2018).

This is the first work to integrate SAF into an Integrated Assessment Model (IAM).
The extended model is named DICE-GIS SAF and is based on DICE-GIS (Nordhaus,
2019). I implement the SAF by modifying the climate feedback parameter. When mod-
eling the SAF, I account for the loss of the albedo in three ways: (1) the albedo contrast
between snow and ice, (2) the albedo of the remaining snow cover which changes its re-
flectivity due to metamorphysical processes within the snow cover, and (3) the actual loss
of snow- and ice-covered areas, which causes a strong decrease in the reflectivity of the
surfaces. Besides, I consider the SMBE feedback by modeling the melting behavior of the
GIS volume to its surface area. Moreover, I integrate a tipping process that models the
reinforcing cycle between the volume loss of the GIS and the temperature increase.

The economy of the DICE-GIS model (Nordhaus, 2019) is based on a neoclassical
Ramsey growth model. Investment is not only dedicated to classical capital but also
natural capital by devoting output to emission reduction. This leads to a decline in
consumption today but increases consumption possibilities in the future. The major
source of output growth per capita, in the long run, is an exogenous improvement in
productivity. The social cost of carbon (SCC) is based on a cost-benefit analysis related
to climate change mitigation and states the associated cost for each tonne of carbon
dioxide emitted. Therefore, the SCC captures the cost of all future climate damages and
determines the optimal policy by setting a Pigouvian tax equal to the SCC.

Taking the SAF into account is essential for determining the optimal policy, while
additional tipping has only a minor impact on the SCC. Accounting for the SAF raises
the SCC under the optimal policy from 274.92 to 319.67 $/tCO2 in 2100, an increase of
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16.3 %. The SCC shows a significantly higher peak value with 4,227.23 compared to
3,562.49 $/t CO2. The increase in SCC is mainly due to the accelerated rise in global
temperature and less to the increased melting of the ice sheet. The SAF reduces the
volume of the GIS in 3500 by 1.6 %, and raises the peak increase in global temperature
from 4.13 to 4.31◦C, an increase of 4%. Additional accounting for tipping raises the SCC
in 2100 up to 321.25 $/t CO2, a further increase of 0.5 %. The peak SCC raises up to
4,324.80 $/t CO2. Tipping reduces the volume further by up to 35.2 %. The amplified
rise in temperature is the main channel through which the SAF affects the SCC. The
accelerated volume loss of the GIS due to the SAF and potential tipping has a minor
impact on the SCC.

There is a broad literature on the inclusion of earth system changes, tipping elements,
and climate risks into IAMs (Kopp et al., 2016; Lenton and Schellnhuber, 2007; Lenton
and Ciscar, 2012; Cai et al., 2015). Several papers describe concrete model extensions
regarding the climate or carbon-cycle module. For instance, Dietz and Venmans (2019)
integrate the saturation of carbon sinks into an analytical IAM. Lemoine and Traeger
(2016) analyze climate policy with a potential domino effect of three different tipping
points. Others expand the scope of IAMs by adding uncertainty which can be related to
the hazard rate of tipping (Cai and Lontzek, 2019; Diaz and Keller, 2016), or the location
of the tipping point (Naevdal, 2006; Lemoine and Traeger, 2014).

Moreover, there are several extensions specific to the DICE model (Nordhaus, 2017).
Cai and Lontzek (2019) add climate and economic risk and model a collapse in ocean
circulation. Moreover, Cai et al. (2016a) implement global spatial heat transport. Diaz
and Keller (2016) include the potential tipping of the West Antarctic ice sheet. Heutel
et al. (2016) incorporate solar geo-engineering and deal with different kinds of climate
tipping points. Cai et al. (2016b) model the causal interaction between five potential
tipping elements in the setting of a stochastic DICE version. Nordhaus (2019) includes
the potential disintegration, i.e., the irreversible melting, of the GIS.

The tipping point in DICE-GIS SAF is reached endogenously, as in Lemoine and
Traeger (2014); Diaz and Keller (2016). Other papers model it exogenously, as for in-
stance in van der Ploeg (2014). I refrain from modeling stochastic tipping to benchmark
DICE-GIS. Hence, I abstract from uncertainty and implement a deterministic tipping
process and tipping threshold. This is in contrast to Cai and Lontzek (2019); Diaz and
Keller (2016); Naevdal (2006); Lemoine and Traeger (2014) who model a stochastic tip-
ping process. Furthermore, I model the consequence of tipping as a shift in the melting
dynamic of the GIS, which simultaneously induces an endogenous acceleration of the cli-
mate dynamic because the climate feedback parameter decreases. This approach is close
to Lemoine and Traeger (2014) who model the consequence as an irreversible change in
climate sensitivity. However, the shift in the climate feedback parameter in their work is
exogenous. Moreover, the consequences of tipping can be modeled through the affection
of economic output, such as an abrupt and irreversible shock to total factor productivity

3



(de Zeeuw and van der Ploeg, 2014), a permanent shock to production (Cai and Lontzek,
2019), or through the impact on non-market goods (Cai et al., 2015). Besides, conse-
quences can be expressed as a change in the capacity of the planet to absorb carbon
(Lemoine and Traeger, 2014), or an abrupt and irreversible release of greenhouse gases
from the ocean and the earth’s surface (van der Ploeg, 2014).

The remainder of the paper is structured as follows: Section 2 provides the geophysical
basics about albedo and the SAF. Section 3 sets up the implementation of DICE-GIS SAF
and tipping. Section 4 describes the calibration. Section 5 presents the results and Section
6 concludes.

2 SAF Geophysics

Albedo and Climate Feedback Parameter

The albedo varies depending on the reflectivity of a given surface. In general, snow is very
reflective and has a high albedo, whereas water, rock, and vegetation are more absorptive
and have a lower albedo. The albedo reaches up to 0.9 for fresh snow. It reduces to 0.4 for
melting snow. When dust and soot are deposited on the snow cover, the albedo declines
to even 0.2 (Rees, 2019).

A climate feedback effect describes the reaction to an initial perturbation of the radia-
tive system (Serreze and Barry, 2014). The reaction appears in the form of a change in
temperature. Various climate feedbacks are affecting the global climate, such as the water
vapor feedback or the SAF. Positive feedbacks accelerate the initial perturbation, while
negative feedbacks dampen it. The SAF causes an additional amount of net shortwave
radiation at the top of the atmosphere (TOA) and is, therefore, a positive feedback (Qu
and Hall, 2007).

Overall, climate feedbacks are stronger in higher latitudes. So, the accelerating effect
on temperature is higher in polar regions. This phenomenon is referred to as polar am-
plification (Goosse et al., 2018) and the SAF plays a crucial role for it (Hall, 2004). The
albedo loss from the melting of ice and snow not only accelerates global warming but also
starts a vicious circle because warmer temperatures in return accelerate the melting and
in consequence promote the loss of albedo. As a result, polar temperatures rise by two
to three times the global average (Serreze and Barry, 2011; Colman, 2013; Duan et al.,
2019).

Regarding the melting of the GIS, the SAF is particularly important because of two
facts. First, the cooling effect is diminishing because the average surface albedo declines
with the enhanced melting of snow and ice. Second, the additional net solar radiation at
the TOA is the most important factor for the massive melting during the summer season
(Tedesco et al., 2016a).
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Quantification

The albedo, α ∈ (0, 1), is the ratio of the outgoing long-wave radiation, S↑, and the
incoming short-wave radiation, S↓, i.e.,

α =
S↑

S↓
. (1)

Accordingly, the albedo gives the portion of the incoming short-wave radiation at the
TOA, which is reflected by the earth’s surface. Climate feedbacks are measured in the
framework of climate feedback parameters which quantify the magnitude of a radiative
perturbation for a given change in surface temperature. The feedback parameter for the
SAF, denoted λSAF , is defined as the change in the radiative flux due to a change in
surface temperature (Goosse et al., 2018). λSAF is given as, i.e.,

λSAF =
∆FSAF

∆TSAF

> 0, (2)

where ∆FSAF is the change in radiative forcing for a given change in temperature ∆TSAF .
Equation (2) illustrates the key assumption of the concept of climate feedback param-
eter stating that the change in radiative flux is proportional to the change in surface
temperature. λSAF is positive because temperature increases with radiative forcing.

In more detail, the SAF is modeled by the change in the amount of net shortwave
radiation at the TOA, Qnet, with the change in surface temperature, Ts (Qu and Hall,
2007). So the SAF, denoted ∂Qnet

∂Ts
, is given by

∂Qnet

∂Ts

= − S↓
∂αp

∂αs

∆αs

∆Ts

. (3)

S↓ is assumed to be constant. So, ∂Qnet

∂Ts
depends on the product of two terms: the

first is the effect of the surface albedo, αs, on the planetary albedo, αp, and the second
is the sensitivity of the surface albedo to temperature changes, ∆αs

∆Ts
. This sensitivity

describes the change in αs for each 1◦C increase in surface temperature and is commonly
used to approximate the SAF strength in climate models (Qu and Hall, 2014). Since
polar warming affects the strength of the SAF due to albedo loss, ∆αs

∆Ts
is of particular

importance.
The magnitude of ∆αs

∆Ts
, in the following denoted NET effect, can be split into the SNC

(snow cover) and the TEM (temperature) component (Thackeray and Fletcher, 2016).
The NET effect is given as

∆αs

∆Ts!"#$
NET

= (αsnow − αice)
∆Ssnow

∆Ts! "# $
SNC

+ S̄snow
∆ᾱsnow

∆Ts! "# $
TEM

. (4)

The SNC component in Equation (4) is related to exposed ice. It describes the re-
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vealing of less reflective surfaces, mainly snow-free bare ice areas that appear after the
snow cover on top of the ice has melted. These exposed surfaces have a lower albedo
than snow-covered surfaces, leading to greater absorption of solar radiation. The SNC
component is given by the contrast between the seasonal mean albedo of snow-covered
surfaces, αsnow, and the albedo of ice but snow-free surfaces, αice. The difference in albedo
is multiplied by the change of the snow cover extent, ∆Ssnow, with respect to a change
in surface temperature, ∆Ts. Whereby ∆Ssnow

∆Ts
states the fraction of the snow cover which

melts for each 1◦C increase in surface temperature.
The TEM component in Equation (4) is related to the metamorphysical characteristics

within the snow cover. As the temperature increases, there are various changes within
the snowpack. For example, the increase in snow grain size or the rise in water amount,
which both influence the reflective properties of the snow cover (Helsen et al., 2017;
Tedesco et al., 2016a). Thus, the albedo of snow changes with warming temperature even
though no snow or ice is actually melting. The average snow-covered fraction, S̄snow, is
multiplied by the sensitivity of the mean snow albedo to temperature increase, ∆ᾱsnow

∆Ts
,

with ∆ᾱsnow denoting the change in mean snow albedo.
Since both components cause a reduction of the reflective properties of the surface,

the NET effect describes the darkening of the ice sheet. The observed darkening of the
GIS is strongly driven by the reduction of the snow cover extent (Tedesco et al., 2016a).
Moreover, in 14 out of 17 climate models, the SNC component dominates the strength of
the surface albedo sensitivity (Fletcher et al., 2015; Qu and Hall, 2007).

In conclusion, the NET effect, or ∆αs

∆Ts
, is the average sensitivity of snow-covered and

snow-free areas in relation to a change in temperature and thus is used to approximate
the strength of the SAF. Since the albedo declines with rising temperature, ∆αs

∆Ts
< 0.

∆αs

∆Ts
is multiplied by λSAF to model the corresponding change in the SAF feedback

parameter due to the loss of albedo, denoted λ∆SAF .

λ∆SAF = λSAF
∆αs

∆Ts

Ts, (5)

where Ts is the absolute rise in surface temperature, and it is Ts > 0. Since λSAF > 0,
∆αs

∆Ts
< 0 and Ts > 0, it follows λ∆SAF < 0. So, the change in the strength of the SAF is

modeled as a decline in the climate feedback parameter.

3 Numerical Implementation

Climate Feedback Parameter

To implement the SAF into DICE-GIS (Nordhaus, 2019), I integrate the effect of a spe-
cific albedo feedback into the climate module by modifying the already existing climate
feedback parameter. The standard feedback parameter in DICE-GIS, denoted λDICE, is
a globally aggregated parameter that captures all relevant feedback effects, for example,
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cloud feedbacks but also the SAF (Calel and Stainforth, 2016). λDICE is constant over
time and given as

λDICE =
FCO2

TCO2

. (6)

FCO2 refers to the radiative forcing from doubling the amount of carbon dioxide in the
atmosphere and TCO2 to the related rise in global temperature. TCO2 is the climate
sensitivity and is inferred from climate models that hold land ice sheets constant (Lemoine
and Traeger, 2014). Hence, the current state of the GIS and the actual atmospheric
temperature have no impact on λDICE.

General Modifications

Global warming has a stronger impact in the arctic regions because of arctic amplifica-
tion (Serreze and Barry, 2011; Colman, 2013; Duan et al., 2019). To model the higher
temperature increase on the GIS, I assume the arctic temperature, denoted Tarc, to rise
twice as fast as the global atmospheric temperature, denoted Tglobe. Therefore, I obtain

Tarc(t) = 2 Tglobe(t). (7)

The damage function of DICE-GIS only considers the increase of the global atmo-
spheric temperature. DICE-GIS SAF refers to the same damage function. Hence, Tarc

has no direct influence on economic damages, but only affects them through the accel-
erated temperature increase due to the SAF. The higher Tarc, the more ice melts. The
higher the albedo loss, the higher is the corresponding future rise in Tglobe and in sea level,
which directly impacts economic damages.

The implementation of the SAF requires the surface area of the GIS because the albedo
refers to the spatial extent of the ice sheet. But, DICE-GIS includes only the volume of
the GIS, denoted V , and does not take the surface area or height into account. Therefore,
I include a relation of the GIS volume to its surface into DICE-GIS SAF.

To calculate the initial surface area of the GIS, denoted A0, I divide the initial volume,
denoted V0, by the initial average height, denoted H0, i.e., A0 =

V0

H0
. To take the SMBE

feedback into account, I assume that until a given threshold of V , denoted δV , the surface,
denoted A, keeps its initial extent A0, and the volume loss is only reflected by the thinning
of the ice sheet, which I model through a proportional decline in H. After passing δV , A
is shrinking according to a function of V and V0. A is given as

A(t) =

%
&'

&(

A0 for V (t) ≥ δV

A0
V (t)

η V (t) + (1− η) δV
100

V0

for V (t) < δV .
(8)

The underlying law and the derivation of Equation (8) can be found in Appendix A.
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Moreover, the surface area fraction, denoted S, is given as S(t) = A(t)
A0

. The initial
surface fraction is S0 = 1. Furthermore, I split S into surface area covered with snow,
Ssnow, and surface area where the snow cover has melted and only ice remains behind, Sice.
Hence, S(t) = Ssnow(t)+Sice(t). Remember that, the separation of snow- and ice-covered
surface is important to model the strength of the SAF, i.e., the contrast in the reflective
properties between snow and ice (SNC component), and the change in reflectivity on the
remaining snow-covered surface area (TEM component). I assume that for the initial
increase in global temperature, Tglobe(0) = 0.85, the whole GIS is still covered with snow,
thus Ssnow(0) = 1 and Sice(0) = 0.

Before passing δV , the increase in Tarc and the melting lead to a fall in Ssnow, but in
return rise Sice by the same amount. After passing δV , it is S(t) < 1, and there is not only
a decline of snow-covered areas but the surface area of the ice sheet is actually shrinking.
The fraction of this former ice-covered surface where now less reflective bedrock appears,
denoted L, is given as L(t) = 1− S(t).

SAF Implementation

In the following implementation, I abstract from a specific arctic surface temperature and
use instead the arctic temperature which refers to the general atmospheric temperature
in the Arctic region. Therefore, Ts ≡ Tarc.

Since the existing feedback parameter λDICE is a globally aggregated parameter, I
only model the change of the SAF due to the melting of the GIS and then relate that
change to λDICE. In more detail, I model the change of the SAF, denoted λ∆SAF , by

λ∆SAF (t) = λSAF
∆αs

∆Tarc

(t) Tarc(t). (9)

λSAF captures the absolute contribution of the SAF to the global climate feedback param-
eter λDICE. ∆αs

∆Tarc
is the sensitivity of the surface albedo to temperature, which I model

endogenously according to the NET effect of Equation (4). Thereby, I model ∆S from
the SNC component of Equation (4) by

∆S(t) =
γ

A(t)
= Smelt(t). (10)

γ denotes the extent of the surface above which the snow cover melts when Tarc increases
by 1◦C. So, Smelt states the fraction of the surface area which melts for each 1◦C increase
in Tarc. Even tough γ is constant, Smelt increases over time as soon as δV is passed, and
A, therefore, declines over time.

Moreover, I model S̄snow from the TEM component of Equation (4) through two steps.
First, I calculate the total surface fraction with melted snow cover, Sice, for a given increase
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in Tarc by

Sice(t) = Smelt(t) Tarc(t). (11)

Second, I subtract Sice from 1 to get the fraction of surface which is still covered by snow,
Ssnow. Therefore, S̄snow = 1− Sice(t) = Ssnow(t). Through this approach, I endogenously
determine the relative strength of the two components of the NET effect. Plugging Smelt

and Ssnow into Equation (4), and substituting Ts with Tarc yields

∆αs

∆Tarc

(t)
! "# $

NET

= [(αsnow − αice) Smelt(t)! "# $
SNC

+Ssnow(t)
∆αsnow

∆Tarc! "# $
TEM

] S(t). (12)

To scale the effect to the remaining total surface area of the GIS, I multiply both com-
ponents by the surface fraction S. This becomes important as δV is passed and S(t) < 1.
Now, I calculate λ∆SAF from Equation (9) using Equations (7), (12), and λSAF .

In addition to the albedo loss from the darkening of the ice sheet, there is a further
albedo loss as soon as δV is passed, and in consequence S(t) < 1 and L(t) > 0. Bedrock
appears underneath the former ice-covered surface which has a significantly lower surface
albedo than snow or ice. I assume that the entire reflective properties of the ice sheet
surface are lost as soon as bedrock appears. As a result, the SAF disappears on this
fraction of the surface. I scale the total loss of albedo, denoted λLoss, to the fraction of
bedrock surface L. Therefore, I model the total albedo loss by

λLoss(t) = (−1) λSAF L(t). (13)

In general, different climate feedback effects are approximately additive. So, different
feedback parameters can be added together (Goosse et al., 2018; Duan et al., 2019; Col-
man, 2003). Hence, the overall time-dependent climate feedback parameter accounting
for the albedo loss from the melting of the GIS, denoted λFB, is given by the sum of the
original climate feedback parameter, λDICE, and the two feedback parameters related to
the SAF. Therefore, I model λFB by

λFB(t) = λDICE + λ∆SAF (t) + λLoss(t)! "# $
Change in SAF from GIS melting

. (14)

So, λFB is the global climate feedback parameter accounting for the change of the SAF
due to the melting of the GIS. Since the SAF is a positive feedback effect, the loss of
albedo corresponds to a decline in the climate feedback parameter (Goosse et al., 2018;
Duan et al., 2019). Therefore, it holds λ∆SAF (t) < 0 and λLoss(t) ≤ 0. In conclusion,
λFB < λDICE. In contrast to λDICE, λFB is not constant but rather depends on ∆αs

∆Tarc
and

Tarc, or Tglobe. This becomes apparent from Equation (7) and (9). Thus by taking the SAF
into account, the feedback parameter depends on the current state of the GIS and more
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specifically on the volume, or the surface area, and the global atmospheric temperature.
Since the SAF is a relatively responsive feedback effect (Hall, 2004), I model it without

time delay. Therefore, ∆αs

∆Tarc
, or the NET effect, impacts the feedback parameter λ∆SAF

and therefore λFB immediately, i.e., in the same time period as the fraction of melted snow
Smelt from the SNC component or the average fraction of the snow-covered area Ssnow

from the TEM component changes. Besides, I abstract from any seasonal fluctuations of
parameters or variables. Moreover, I do not consider the albedo loss due to contaminants
on the surface of the ice sheet such as aerosol deposits, as there is no evidence that the
accelerated darkening of the GIS is due to dust accumulation (Tedesco et al., 2016a).

SAF Integration

I integrate λFB into DICE-GIS SAF by replacing λDICE in the temperature equation of
DICE-GIS. This gives

Tglobe(t+1) = Tglobe(t) + c1[FCO2(t+1)− λFB(t) Tglobe(t)]− c2[Tglobe(t)− Toce(t)],

with FCO2(t+1) denoting radiative forcing, Toce(t) denoting ocean temperature, c1 de-
noting the transfer coefficient for the upper atmosphere, and c2 denoting the transfer
coefficient for the atmosphere to the ocean. It is c1, c2 > 0. The transfer coefficients can
be interpreted as the speed with which the temperature converges to its new equilibrium.
Both coefficients are directly taken from Nordhaus (2019).

Since c1 > 0 and λFB(t) < λDICE, Tglobe(t+1) under λFB is always higher than under
λDICE. This fact models the accelerating temperature increase due to the loss of albedo.

GIS Tipping

In contrast to Lemoine and Traeger (2014), the tipping in DICE-GIS SAF does not refer
to an exogenous shift in the climate feedback parameter. Rather, it refers to a reinforced
dynamic in the endogenous decline of the climate feedback parameter, which is induced
by the accelerated melting of the GIS.

I model the tipping points as exogenous thresholds, denoted κV for the volume tipping
threshold, or κT for the temperature tipping threshold. The tipping point κT reflects a
global threshold and refers to Tglobe. Both thresholds are reached endogenously within
the model. Upon passing κV or κT , the melt rate of the GIS accelerates. Note that, the
decrease of the volume in DICE-GIS is modeled as an absolute change of the volume.
For the sake of simplicity, I call it melt rate when referring to the absolute change of the
volume. I model the consequences of passing a tipping point by a tipping factor ψ > 0,
which increases the melt rate of V . Furthermore, multiple tipping takes into account
the successive passing of both thresholds, i.e., a combination of temperature and volume
tipping. As soon as κV and κT are exceeded, I assume that the melt dynamic is further
accelerated by the interaction between temperature increase, albedo loss, and melting of
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the GIS. The rising temperature increases the loss of ice and in return, this increases
the temperature through the SAF. Therefore, I exponentiate ψ with ρ > 1, for more
information about the parameter value see Section 4 Calibration - Tipping.

The melt equation accounting for tipping, V̇TP , is given as

V̇TP (t) =

%
&&&'

&&&(

g(t) for Tglobe(t) < κT or V (t) ≥ κV

ψ g(t) for Tglobe(t) ≥ κT or V (t) < κV

ψρ g(t) for Tglobe(t) ≥ κT and V (t) < κV .

(15)

where g(t) is the standard melt function from DICE-GIS.

4 Calibration

The parameter choice of the model parameter is described in the following. Tables with
the values of all parameters can be found in Appendix B.

Volume and Surface

The actual volume of the GIS is about 2,850,000 km3 with an average thickness of
1.6 km (Nordhaus, 2019). This gives an actual surface area of 1,781,250 km2. The
initial volume is scaled such that V0 = 100. Moreover, the initial height is H0 = 1.6. The
actual initial surface area A0 is given the actual surface area divided by the scaling factor
of 28,500, i.e., A0 = 1,781,250

28,500
= 62.5. I assume the threshold δV to be 80 % of the initial

volume, hence δV = 0.8V0 = 80. Regarding η it holds that the larger η, the more convex
is the relation between A and V , see also Equation (8). I set η = 0.45 to define a slight
convexity between the surface and the volume.

SAF

The literature states different estimates for the absolute contribution of the SAF to the
climate feedback parameter λSAF . Flanner et al. (2011) estimate λSAF within the range
of 0.33 to 1.07 with the best estimate of 0.62. Duan et al. (2019) calculate the average
contribution of sea ice and land snow to the climate feedback parameter to be 0.77 with
the separated effect for land snow of 0.3. Qu and Hall (2014) find a mean of 0.42 for the
northern hemisphere while investigating 25 climate models. Winton (2006) provides an
estimate for the mean λSAF of 0.3. Regarding these estimates, I choose the value of 0.5
for λSAF .

The value of αsnow reflects the albedo of the accumulation area.1 It is estimated to be
in the range of 0.75 to 0.83 (Alexander et al., 2014). Box et al. (2012) find a mean annual

1Area with positive mass balance, i.e., snow accumulation exceeds the melting of snow and ice dis-
charge.
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albedo for the accumulation area of 0.81. Moreover, observations from Greenland indicate
snow albedo values within the range of 0.75 to 0.85 (Helsen et al., 2017; Alexander et al.,
2014). Therefore, I set αsnow to 0.81.

The value of αice refers to the albedo of the ablation area.2 Observations and estimation
indicate that the value is in the range of 0.45 to 0.67 (Alexander et al., 2014; van Angelen
et al., 2012; Box et al., 2012). Therefore, I set αice to 0.45.

According to the estimate of Abdalati and Steffen (1997), an increase in temperature
of 1 ◦C over the GIS causes surface melting, and hence, a decline in the snow cover extent
of 80, 000 km2. Hence, I choose the value of -80,000 for γ.

The value of ∆αsnow

∆Tarc
describes the sensitivity of the snow albedo to temperature

changes. For the northern hemisphere, it is estimated to be within the range of -0.9
to -1.7 with a mean strength of -1.2 (Fletcher et al., 2015; Thackeray and Fletcher, 2016).
Moreover, Box et al. (2012) find a mean sensitivity for the GIS accumulation area of
-0.2, with extreme sensitivities up to -15.0 in the South-Western part of the ice sheet.
According to these estimates, I set ∆αsnow

∆Tarc
equal to -1.2.

Tipping Thresholds

For volume tipping, I assume that as soon as there is only 90 % of the initial volume
left, the disintegration of the GIS is difficult to reverse. Hence, κV = 0.9 V0 = 90. This
specification is based on the estimates of Ridley et al. (2009). The threshold is reasonable
as the GIS has thinned considerably until V < κV . Due to the lower elevation of the
ice sheet, the ice is exposed to higher surface temperatures which accelerates the melting
process.

Temperature tipping is based on the passing of a certain temperature threshold, κT .
Irreversible melting of the GIS is likely for a global temperature increase in the range of 0.8
to 3.2◦C (Robinson et al., 2012), or 1.3 to 4.5◦C (Ridley et al., 2009). These results agree
with the IPCC’s assessment that assumes a serious risk of tipping from a temperature
increase of 1.5 to 2◦C (IPCC, 2019). I set κT = 3.4◦C.

Furthermore, I assume that after passing a potential tipping point the melt rate dou-
bles its intensity, hence ψ = 2. Moreover, for multiple tipping, I assume that as soon as
both tipping points are reached, the intensified melt rate is exponentiated by ρ = 2 to
model the increasing instability of the GIS.

I run the model with a five-year time step from 2015 to 3500. Besides the noted
changes, I change the value of one additional parameter. For period t=2015 to 2115, I
set the upper limit of the emission control rate from 1.2 to 1.0 to restrict the impact of
geo-engineering and prevent jumping of emission control due to the default calibration
in Nordhaus (2019). Apart from this, the model setting of DICE-GIS SAF remains the
same as in DICE-GIS.

2Area with negative mass balance, i.e., the melting of snow and ice discharge exceed the snow accu-
mulation.
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5 Results

The following results describe the optimal policy, i.e., the policy under which external
climate damages are fully internalized. Hence, the carbon price equals the SCC. DICE-
GIS refers to the model of Nordhaus (2019), while DICE-GIS SAF refers to my extended
model with the integrated SAF module. Results for the non-optimal policy, under which
climate damages are not internalized, are presented in Appendix C.

SCC under Optimal Policy
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Figure 1: SCC

Figure 1(a) shows the SCC until 2100 and Figure 1(b) presents the peak values for the
SCC from 2350 to 2500. The gray graph refers to DICE-GIS, the orange graph to DICE-
GIS SAF, and the green graph to DICE-GIS SAF with multiple tipping. Accounting for
the SAF raises the SCC from 274.92 to 319.67 $/tCO2 in 2100, an increase of 16.3%. In
contrast to the SAF, the additional hazard of multiple tipping has only a minor impact
on the SSC. The SCC in 2100 increase to 321.25 $/tCO2, an additional increase of only
0.5%. Besides, the SAF raises the peak value of the SCC. For DICE-GIS, the SCC peaks
at 3,573.91 $/tCO2, while for DICE-GIS SAF at 4,240.50 $/tCO2, an increase of 18.6%.
The peak value for DICE-GIS SAF with multiple tipping is 4,326.03 $/tCO2; a further
increase of 2 %. Figure 1 depicts that the SAF has a greater impact on the SCC than
tipping.

GIS Dynamics

The following years are important for the understanding of the dynamics below: 2095,
2380, and 2560. 2095 is the year when the first tipping threshold κT is passed, therefore,
the melting rate doubles for DICE-GIS with multiple tipping. In 2380, the second tipping
threshold κV is reached as well, therefore, the melting rate accelerates further. In 2560,
the volume threshold δV is exceeded and, in consequence, the surface area of the GIS
starts to shrink.
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Figure 2 presents the volume of the GIS on the left axis (solid lines) and the surface
fraction of this GIS on the right axis (dashed lines) from 2015 to 3500. In 3500, the volume
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Figure 2: Volume and Surface Fraction

is 82.52 for DICE-GIS and 81.26 for DICE-GIS SAF. Comparing the solid gray and solid
orange line, the calculations show that the SAF has per se only a small influence on the
volume. Hence, neither of them reaches δV . Therefore, the surface keeps its initial size
in both models. For DICE-GIS SAF with multiple tipping, the volume melts remarkably
faster. Figure 2 shows that the first threshold κT is passed in 2095, see also Figure 4.
The second threshold κV is reached in 2380. Moreover, DICE-GIS SAF passes δV in 2560
which is when the surface fraction starts to shrink. In comparison to DICE-GIS, the
volume for DICE-GIS SAF with multiple tipping in 3500 is 53.08, or -35 %, while the
surface fraction is 78%. Figure 2 reveals that tipping has a greater impact on the volume
of the GIS than the SAF.

The differences in the volume loss can be explained with the distinct melt dynamics
displayed in Figure 3. The melt rate of DICE-GIS SAF is slightly more negative than of
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Figure 3: Melt Rate

DICE-GIS. This difference is due to the SAF. Regarding DICE-GIS SAF with multiple
tipping, the melt rate is far more negative. As soon as κT is passed in 2095, the melt rate
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is accelerated by the tipping factor ψ. As soon as κV is reached as well, i.e., in 2380, the
melt rate is multiplied by the exponentiated factor ψρ, i.e., by 4. Hence, the melt rate
doubles again and falls from -0.16 to -0.32. However, this change in the volume of the
GIS is induced more by the tipping dynamic than by the SAF. In conclusion, the SAF
does not play a major role in the amplification of the melt dynamic, but tipping does.
This is plausible, since tipping has a direct impact on the melt rate, and thus, on the
volume. In contrast, the SAF influences the volume only indirectly through the decease
in the feedback parameter which in turn increases the temperature and then accelerates
the melting.

Temperature Dynamics

Figure 4 shows the temperature increase Tglobe on the left axis (solid lines) and the feedback
parameter on the right axis (dashed lines) from 2015 to 3500. Regarding the temperature
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Figure 4: Temperature Increase and Feedback Parameter

increase, the threshold κT is passed in 2095. When accounting for the SAF, warming
peaks in 2260 at 4.31◦C, an additional increase in peak temperature of 4%. It is noticeable
that warming peaks at the same time when the feedback parameter reaches its minimum
value. The temperature rise of DICE-GIS SAF with multiple tipping does not flatten
out as much, which is due to the stronger decreasing feedback parameter. In 3500, the
temperature increase is 3.24◦C for DICE-GIS, 3.35◦C for DICE-GIS SAF, and 3.69◦C for
DICE-GIS SAF with multiple tipping.

The feedback parameter λDICE is 1.19 and constant over time. In contrast, the feed-
back parameter λFB decreases due to the SAF. Until 2260 λFB falls to 1.09. Then, the
decrease is followed by stabilization. For DICE-GIS SAF the feedback parameter in-
creases slightly after 2500. This means that the albedo loss decreases as the melting of
the GIS slows down. Besides, less snow and ice melt on the surface as the temperature
cools down again. For DICE-GIS SAF with multiple tipping, the feedback parameter
decreases further from 2560, although the temperature starts to cool down. This is due
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to the shrinking surface, see Figure 2, which causes a loss in total albedo. In 3500, λFB is
1.11 for DICE-GIS SAF and 0.99 for DICE-GIS SAF with multiple tipping. Accounting
for the SAF decreases the feedback parameter by -7 %, or -17 % respectively.

Figure 4 depicts that the peak increase in temperature is caused by the SAF, while
tipping has no significant influence on the temperature. Tipping only weakens the later
cooling of the temperature, but the SAF intensifies the initially strong increase in tem-
perature.

SAF and Tipping Implications

In summary, the presented results show interesting implications of the SAF and tipping,
namely: the SAF increases the SCC because it amplifies the temperature increase due to
the lower feedback parameter; while tipping enhances the volume loss of the GIS. As can
be seen in Figure 4, the SAF has an earlier impact on the temperature increase than the
tipping process. Hence, the damage from temperature increase induced by the SAF occurs
earlier than the damage induced by tipping. Besides, additional damages from sea level
rise caused by tipping occur only in the long term and therefore have less impact on the
SCC. Consequently, damages from tipping lie in the far future. Even at very low discount
rates, i.e., a higher valuation for future damages, accounting for multiple tipping does not
significantly raise the SCC. This is true for the inclusion of multiple tipping in DICE-GIS
and DICE-GIS SAF. Results for the corresponding SCC under varying discount rates are
shown in Table 1. There is no significant difference in the SCC whether the calculation is
done with or without multiple tipping. However, there is a significant difference once the
SAF is accounted for. This confirms my conclusion that the SAF and not tipping is the
main reason for the increase in the SCC. Thereby, the temperature increase is the most
important channel through which the SAF affects the SCC.

Discounting 0.5 % 1 % 1.5 %3

DICE-GIS 757.42 418.15 274.92
with multiple tipping 757.45 420.71 276.29

DICE-GIS SAF 873.34 485.23 319.68
with multiple tipping 873.35 488.30 321.25

Table 1: SCC ($/tCO2) in 2100 depending on the discount rate

Robustness

In Appendix D, I show that the SCC and the volume of the GIS are robust (changes
below 1 %) with regard to η (± 50 %) and δV (± 5 %). Moreover, the SCC is relatively
robust (changes below 5 %) with regard to ρ (± 25 %) and γ (± 25 %). The SCC is
sensitive (changes above 5 %) with regard to λSAF (± 50 %). Additionally, the feedback

3This is the standard DICE discount rate; it is used for the calculation of all results.
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parameter is sensitive to λSAF (± 50%). However, this fact does not diminish my results
but rather underlines that the SAF plays an important role for the temperature increase
and therefore has a significant impact on SCC. Furthermore, the SCC and the volume are
sensitive to ψ (-25 % to +100 %), especially to values of ψ greater than +50 %, because
the tipping factor is exponentiated. Nevertheless, this parameter only influences multiple
tipping and therefore does not diminish the importance of the SAF. A comprehensive
sensitivity analysis can be found in Appendix D.

6 Conclusion

Although DICE-GIS (Nordhaus, 2019) takes the melting of the GIS into account for the
estimation of the SCC, it does not consider any further feedback effects on the climate or
sea level. As a result, the SCC is considerably underestimated. My extended DICE-GIS
SAF model shows that it is not so much the sole melting of the GIS that raises the SCC,
but rather the positive feedback effect arising from the loss of albedo. This, in turn, comes
along with enhanced global warming and induces a vicious cycle between the melting of
snow and ice, and temperature increase.

Accounting for the SAF raises the SCC in 2100 from 274.92 to 319.67 $/tCO2. The
SCC shows a peak value of 4,227.23 compared to 3,562.49 $/t CO2. Additional tipping
raises the peak SCC to 4,324.80 $/t CO2. The results for the year 2100 show that the
increase in the SCC is mainly caused by the SAF with an increase of 16.3 %, and less
by tipping, which causes an additional increase of only 0.5 %. This underlines that the
inclusion of the SAF has a significant impact on the SCC. Furthermore, the SAF raises
the peak temperature increase from 4.13 to 4.31◦C. The temperature increase is the main
channel through which the SAF impacts the SCC. The long-term volume of the GIS in
3500 declines by 1.6%, while tipping reduces it further by up to 35.2%. Tipping, therefore,
plays a major role in the enhanced volume loss.

In conclusion, the consequent loss of albedo is a crucial factor in estimating future
economic damage and determining the optimal policy. Given this insight, the optimal
policy must not only be adopted but also enforced more consistently than it has been the
case so far. The future carbon price must be based on the precise SCC to mitigate the
melting of the GIS and preserve the cooling effect of the ice sheet on the global climate.

DICE-GIS SAF covers the role of the GIS only. The fact that the GIS is not the
only large ice sheet on the planet emphasizes the great significance of the albedo loss
on the SCC. All policy implications of my model can be transferred to the real world
accounting for other ice sheets, sea ice, or even the entire cryosphere on the planet. Even
if Antarctica is not yet melting as strongly as the GIS, with a total potential of about
59 m in global sea level rise as well as the possible loss of the largest and most reflective
area of the planet (IPCC, 2014), it holds an enormous potential to increase the SCC even
further. In addition, I focus exclusively on the contrast between snow-covered and bare
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ice or bedrock-covered areas. However, when the melting of sea ice is also taken into
account, the albedo loss is even higher because the contrast in reflectivity between sea ice
and open ocean is more extreme. As a result, the climate heats up even more and the
economic damage is even greater, leading to an even higher increase in the SCC.

Even though the time horizon, especially for the significant melting and tipping of
the GIS is very long, there is already a noticeable increase in the SCC of 16.3% by 2100.
Besides, potential interactions with other earth components, which are likely to tip earlier,
such as the irreversible thawing of the permafrost, could dramatically shorten the time
horizon and move the tipping of the GIS much closer to the present. This would further
exacerbate the albedo loss and strengthen the vicious cycle. For this reason, policymakers
must already take the consequences of the melting of the GIS very seriously today, even
if they seem far off at this stage.

The impact of the SAF on global warming is certain and already evident in the short
term, but tipping is supposed to happen in the long run. Additionally, uncertainty from
potential future interactions with other earth components plays a crucial role in long-
term considerations. However, considering solely the tipping of the GIS without any
interactions of other earth components, as in DICE-GIS SAF, uncertainty is rather not
relevant. But the inclusion of uncertainty would be very important if long-term further
interactions, such as the interaction with the North Atlantic Oscillation, are taken into
account.

Without doubt, DICE-GIS SAF is based on various assumptions and simplifications.
On the one hand, the assumed linear melting behavior which is taken from Nordhaus
(2019) is not representative of the actual melting dynamic of the GIS (Trusel et al., 2018).
On the other hand, the SAF is implemented in a simplified way, as well. The modeling does
not account for seasonal variability or possible future changes in the cryospheric system,
such as a change in the precipitation pattern. Nonetheless, DICE-GIS SAF provides a
reasonable approach on how to simplify complex earth dynamics and integrate them into
existing IAMs. To render the model more realistic, future work may include seasonable
variability of the melting process, especially concerning the snow cover and the albedo.
Moreover, future work may not only account for the volume loss of the GIS due to the
melting but also due to the discharge of ice.

Above all, my research depicts that the SAF increases the SCC significantly due to the
amplified temperature increase. This fact highlights the general importance of improving
IAMs by integrating components of the earth system in a more detailed way than the
popular state of the art IAMs do so far. Moreover, future research on the estimation of
the SCC must include other potential feedback effects within different elements of the
earth system and interactions across them. Otherwise, policymakers would be relying on
what appears to be the optimal policy, taking an immense risk for future generations.
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A Derivation of Equation (8)

Equation:

A(t) =

%
&'

&(

A0 for V (t) ≥ δV

A0
V (t)

η V (t) + (1− η) δV
100

V0

for V (t) < δV .

Assumptions:

1. A(t) = V (t)
H(t)

2. Ḣ(t) = η1 V̇ (t) for all t with V (t) ≥ δV , whereby η1 = 1/A0

3. Ḣ(t) = η2 V̇ (t) for all t with V (t) < δV , whereby η2 = η/A0 and η ∈ (0, 1)

Case: V (t) ≥ δV

I assume that A(t) = A0, i.e., the surface area is the initial surface area and is constant
over time. According to Assumption 2, the growth rate of H(t), denoted Ḣ(t), is given as

Ḣ(t) =
V̇ (t)

A0

,

with V̇ (t) denoting the growth rate of V (t). Integrating Ḣ(t) gives

H(t) =
V (t)

A0

+ σ1.

σ1 is chosen such that

H0 =
V0

A0

.

Hence, σ1 = 0, and thus

H(t) =
V (t)

A0

.

Under Assumption 1, it follows for V (t) ≥ δV

A(t) =
V (t)

H(t)
=

V (t)
1
A0
V (t)

= A0.

Case: V (t) < δV

According to Assumption 3, it is

Ḣ(t) =
η V̇ (t)

A0

.

Integrating Ḣ(t) gives

H(t) =
η V (t)

A0

+ σ2.
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σ2 is chosen such that H(t) is a continuous function with t∗ denoting the period when δV

is reached. Hence, V (t∗) = δV . This gives

H(t∗) =
V (t∗)

A0

=
δV
100

V0

A0

.

Therefore, it follows for σ2

σ2 =
δV
100

V0

A0

−
η δV

100
V0

A0

=
(1− η)

A0

δV
100

V0.

For t ≥ t∗ it follows

H(t) =
η V (t)

A0

+
(1− η)

A0

δV
100

V0.

Under Assumption 1, it follows for V (t) < δV

A(t) =
V (t)

H(t)
=

V (t)
η
A0
V (t) + (1−η)

A0

δV
100

V0

= A0
V (t)

η V (t) + (1− η) δV
100

V0

.
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B Calibration Tables

Parameter V0 H0 A0 δV η

Value 100 1.6 62.5 80 0.45

Table A1: Parameters Volume and Surface

Parameter λSAF αsnow αice γ ∆αsnow

∆Tarc

Value 0.5 0.81 0.45 -80,000 -1.2

Table A2: Parameters SAF

Parameter κV κT ψ ρ

Value 90 3.4 2 2

Table A3: Parameters Tipping
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C Non-Optimal Policy Results

The results for the non-optimal policy are presented in the following. The main difference
to the results for the optimal policy is mentioned.
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Figure A1: SCC

Figure A1(a) shows the SCC until 2100 and Figure A1(b) presents the peak values for
the SCC from 2350 to 2500. The gray graph refers to DICE-GIS, the orange graph to
DICE-GIS SAF, and the green graph to DICE-GIS SAF with multiple tipping.

The peak SCC for DICE-GIS is remarkably lower than under the optimal policy. When
accounting for the SAF, the SCC is a little higher and the difference in the SCC between
DICE-GIS SAF and DICE-GIS SAF with multiple tipping is larger.

GIS Dynamics
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Figure A2: Volume and Surface Fraction
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Figure A2 displays the volume of the GIS on the left axis (solid lines) and the surface
fraction of the GIS on the right axis (dashed lines) from 2015 to 3500. Compared to
the optimal policy, the volume decreases faster and is significantly lower in the long run.
Consequently, the surface fraction starts to decrease earlier. Under the non-optimal policy,
multiple tipping is reached 100 years in advance in 2280. Moreover, the shrinking of the
surface area for DICE-GIS SAF with multiple tipping begins 180 years earlier in 2380.
For DICE-GIS SAF, the surface fraction begins to decline in 2480.
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Figure A3: Melt Rate

Figure A3 presents the melt dynamics. In addition to the earlier passing of the tipping
thresholds, the melt rate has a higher (more negative) magnitude, which leads to the
greater volume loss, see Figure A2. In contrast to the optimal policy, DICE-GIS SAF
shows, in the long run, a slightly higher magnitude of the melt rate compared to DICE-
GIS.
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Temperature Dynamics

Figure A4 shows the temperature increase Tglobe on the left axis (solid lines) and the
feedback parameter on the right axis (dashed lines). The peak increase in temperature is
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Figure A4: Feedback Parameter

notably higher than under the optimal policy. When accounting for the SAF, the temper-
ature increase shows only a very limited cooling after peaking. Hence, the temperature
for DICE-GIS SAF remains at a relatively high level. The threshold κT is passed in 2085,
10 years earlier compared to the optimal policy. Surprisingly, the temperature increase is
much higher for DICE-GIS SAF than for DICE-GIS SAF with multiple tipping.

In general, the feedback parameter λFB decreases more than with the optimal policy.
After the surface of the GIS starts to decrease in 2380 for DICE-GIS SAF with multiple
tipping and in 2480 for DICE-GIS SAF, see also Figure A2, λFB continues to decline
steadily. In contrast to the optimal policy, there is no subsequent increase in the feedback
parameter.
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D Sensitivity Analysis

The following appendix presents a comprehensive sensitivity analysis for the parameters
mentioned in Section 4. The calculations are based on DICE-GIS SAF. Several calcula-
tions include tipping. Volume tipping refers to the solely passing of κV . While temperature
tipping refers to the solely passing of κT . Multiple tipping refers to the passing of both
thresholds κV and κT .

Volume and Surface: η

The following analysis is based on DICE-GIS SAF with multiple tipping, because for
DICE-GIS SAF, the volume does not fall below δV = 80. Figure A5 shows the SCC in
dependence to η. Varying η in the range of 0.25 to 0.75 gives no significant change in
the SCC in the year 2100. There is an absolute deviation in the peak SCC of -28.20 to
18.55 $/tCO2. This gives a relative deviation of -0.65 to 0.40 %.
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Figure A5: Multiple Tipping - SCC depending on η; Deviation Reference η = 0.45

Figure A6 displays the volume in dependence to η. The volume in 3500 gives an
absolute deviation from -0.94 to 1.40 %p (percentage points).

The higher η, the more convex is the relation between the loss of the volume and the
decrease of the surface fraction. Hence, the higher η, the higher is the surface fraction
for a given volume. This implies less total albedo loss and thus a lower decrease in the
feedback parameter after passing δV . Therefore, the temperature increase is negatively
correlated to η. Hence, the SCC is relatively lower while the volume is relatively higher.

I conclude that the SCC and the volume are relatively robust to the variation of η.

Volume and Surface: δV

The following analysis is based on DICE-GIS SAF with volume tipping. There is no
significant deviation in the SCC when varying δV from 76 to 85. The absolute deviation
of the peak SCC is between -0.2 to 0.7 $/tCO2.
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Figure A6: Multiple Tipping - Volume depending on η; Deviation Reference η = 0.45

Figure A7 shows the impact on the volume. The absolute deviation in 3500 is in the
range of -0.26 to 0.09 %p.
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Figure A7: Volume Tipping - Volume depending on δV ; Deviation Reference δV = 80

Note, that the volume starts to deviate earlier for higher values of δV , because as the
surface fraction declines, there is total albedo loss and the feedback parameter decreases
again, see Figure 4. This, in turn, accelerates the temperature increase and promotes the
melting of the GIS.

In addition, I vary δV from 99.9 to 91 to investigate the impact on DICE-GIS SAF
as well. For δV = 99.9, the surface fraction starts to decrease almost immediately as the
volume melts.

Figure A8 presents the SCC depending on δV . The SCC in 2100 shows an absolute
deviation of 2.29 $/t CO2, or relatively 0.7 %. The peak SCC deviates up to
131.63 $/tCO2, or 3.1 %.

Figure A9 shows the volume in dependence to δV . The GIS starts to melt compara-
tively earlier for higher values of δV , which reveals a similar pattern as in Figure A7. The
volume in 3500 decreases by up to -0.83 %p.
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Figure A8: DICE-GIS SAF - SCC depending on δV ; Deviation Reference δV = 80
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Figure A9: DICE-GIS SAF - Volume depending on δV ; Deviation Reference δV = 80

Consequently, the volume is relatively robust to the variation of δV . This holds for
DICE-GIS SAF as well as for DICE-GIS SAF with volume tipping. The SCC is sensitive
for DICE-GIS SAF under δV ≥ 91, but not for volume tipping under 75 ≤ δV ≤ 85.

SAF: λSAF

The following analysis is based on DICE-GIS SAF. Figure A10 presents the SCC in
dependence to λSAF in the range of 0.25 to 0.75 (Flanner et al., 2011; Duan et al.,
2019; Qu and Hall, 2014; Winton, 2006). The SCC in 2100 differs between -23.83 and
27.47 $/t CO2, or -7.5 to 8.5 %. The deviation of the peak SCC is -359.90 to
431.51 $/tCO2, or -8.5 to 10.2 %.

Figure A11 shows the influence of the absolute contribution of the SAF to the climate
feedback parameter λSAF . The higher λSAF , the stronger is the decreasing impact on the
global feedback parameter λFB. Thereby, the course remains almost robust. The feedback
parameter in 3500 is in the range of 1.06 to 1.15, a relative deviation of -4.6 to 3.6 %.

I deduce that the SCC and the feedback parameter are sensitive to λSAF . This under-
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Figure A10: DICE-GIS SAF - SCC depending on λSAF ; Deviation Reference λSAF = 0.5
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Figure A11: DICE-GIS SAF - λFB depending on λSAF ; Deviation Reference λSAF = 0.5

lines the fact that the SAF plays an important role for the climate and has a significant
impact on the SCC.

SAF: γ

The following analysis is based on DICE-GIS SAF. Figure A12 displays the SCC in
dependence to γ. The SCC in 2100 varies between -5.89 and 6.09 $/t CO2, or -1.8 to
1.9 %. The peak SCC deviates from -89.77 to 93.77 $/tCO2, or -2.1 to 2.2 %.

I conclude that the SCC is sensitive to γ, which underlines the impact of the SAF.

Tipping: κV

The following analysis is based on DICE-GIS SAF with volume tipping. Figure A13
visualizes the SCC with κV varying from 95 to 85. There is no significant impact on the
SCC in 2100. The peak SCC deviates in the range of -2.96 to 22.65 $/tCO2, or -0.06 to
0.5 %. The volume deviates in the range of -0.05 to 0.06 %p.
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Figure A12: DICE-GIS SAF - SCC depending on γ; Deviation Reference γ = -80,000
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Figure A13: Volume Tipping - SCC depending on κV Deviation Reference κV = 90

I derive a limited sensitivity of the SCC to κV , while the volume is robust. This is
because κV is reached very late, see Figure 2.

Tipping: κT

The following analysis is based on DICE-GIS SAF with temperature tipping. Figures A14
presents the SCC with κT varying from 1.5 to 4.5 ◦C (IPCC, 2019; Robinson et al., 2012;
Ridley et al., 2009). The SCC in 2100 falls by up to -1.52 $/tCO2, or 0.04 %. The peak
SCC deviates in the range of -20.64 to 0.50 $/tCO2, or -0.5 to 0.01 %.

Figure A15 shows the volume depending on κT and depicts a similar pattern. The
volume is only sensitive for κT ≥ 3.6 ◦C and deviates up to 13.0 %p.

Since the thresholds for κT < 3.6 ◦C are all reached very early, see Figure 4, temper-
ature tipping starts at about the same time for 1.5 ≤ κT < 3.6 . Therefore, neither the
SCC nor the volume shows a significant deviation. For κT ≥ 3.6 ◦C, the SCC and the
volume are sensitive as the timing of passing the threshold varies.
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Figure A14: Temperature Tipping - SCC depending on κT ; Deviation Reference κT = 3.4
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Figure A15: Temperature Tipping - Volume depending on κT ; Deviation Reference κT = 3.4

Tipping: ρ

The following analysis is based on DICE-GIS SAF with multiple tipping. Figure A16
shows the SCC in dependence to ρ varying from 1.5 to 2.5. There is no significant variation
in the SCC in 2100. The peak SCC deviates in the range of -50.23 to
89.60 $/tCO2, or by -1.2 to 2.1 %.

The volume deviates in the range of -0.19 to 0.18 %p. I deduce that the SCC and
particularly the volume are rather robust to ρ.

Tipping: ψ

The following analysis incorporates DICE-GIS SAF with volume, temperature and multi-
ple tipping. ψ is varied in the range of 1.5 to 4. Figure A17 presents the SCC in variation
to ψ.

For DICE-GIS SAF with volume tipping, there is no deviation in 2100. But, the peak
SCC varies in the range of -1.37 to 6.66 $/t CO2, or -0.03 to 0.16 %. Surprisingly the
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Figure A16: Multiple Tipping - SCC depending on ρ; Deviation Reference ρ = 2

SCC for ψ = 1.75 initially shows a positive deviation followed by a negative deviation.
For DICE-GIS SAF with temperature tipping, the SCC in 2100 varies from -0.75 to
2.95 $/t CO2, or -0.02 to 0.09 %. The deviation of the peak SCC is between -10.63 to
171.29 $/tCO2, or -0.2 to 4.0 %. For DICE-GIS SAF with multiple tipping and ψ ≤ 3,
the SCC in 2100 varies from -0.79 to 2.27 $/tCO2, or -0.2 to 0.7%. The deviation of the
peak SCC is -73.94 to 467.10 $/tCO2, or -1.7 to 10.8 %. The SCC is highly sensitive for
ψ > 3, exploding up to 3.9 million $/tCO2.

Figure A18 shows the volume in variation to ψ. Accounting for volume tipping, the
volume in 3500 is in the range of 62.16 to 77.54, or -11.92 to 3.46 %p. Accounting for
temperature tipping, it is in the range of 48.99 to 74.39, or -19.27 to 6.12%p. Accounting
for multiple tipping, it is in the range of 19.06 to 68.13, or -34.02 to 15.05 %p.

I conclude that, surprisingly, there is only a very small impact for volume tipping.
Temperature tipping is quite sensitive to ψ. While accounting for multiple tipping is the
most sensitive, because ψ is exponentiated with ρ, see Equation (15).
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Figure A17: SCC depending on ψ; Deviation Reference ψ = 2
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Figure A18: Volume depending on ψ; Deviation Reference ψ = 2
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