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Preface

With the Paris Agreement of 2016, 189 nations signed a legally binding document to keep

global warming below 2◦C, and to pursue e�orts to limit the temperature increase to 1.5◦C. It

was recognized that this would reduce climate change impacts substantially. All signatories

submitted “Intended Nationally Determined Contributions” (INDCs) where they specified

their national emission reduction goals and pathways to achieve them. However, the INDCs

submitted for the Paris Agreement “imply a median warming of 2.6-3.1 degrees Celsius by

2100” (Rogelj et al. 2016). A temperature increase by 2◦C would already carry a very high risk

for systems such as the Arctic sea ice and coral reefs. For awarming of 3◦C above pre-industrial

levels though, we are expected to face extensive losses of biodiversity and ecosystems; ac-

celerated economic damages; and a high risk for abrupt and irreversible changes (“tipping

points”), such as the melting of the Greenland ice sheet and the accompanying sea level rise

(IPCC 2014b).

The Paris Agreement stipulates that countries can update and strengthen their contributions,

and some have already done so. Most INDCs, however, do not even provide clear policies on

how to achieve their targets. It is therefore obvious that further policies and large investment

shi�s are necessary to stay below 2◦C warming, let alone 1.5◦C (Rogelj et al. 2018). This thesis

studies the economic implications of (expected) future climate policies.

To assess the economic e�ects of climate action, a typical first approach is to measure the

cost of avoiding emissions from an engineering perspective. For instance, replacing coal-fired

power generation with large-scale solar photovoltaic (PV) systems incurs an estimated cost

of 28$ per avoided ton of CO2 as of 2017 (in 2017 $) (Gillingham and Stock 2018). However,

private costs can change over time and space, and emissions abatement has more e�ects

than just private costs – it can even have economic benefits beyond reducing the damages

of climate change. It is therefore important to consider systemic, dynamic, and expectation

e�ects of climate policies as well. The installation of solar PV, for instance, requires changes

in the design of power markets, and in the skills and intermediate inputs needed to run

these new energy systems. Since the available natural and economic resources may di�er

between regions, these changes imply heterogeneous e�ects. Furthermore, dynamic e�ects
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need to be considered. The development and installation of solar PV leads to economies

of scale, learning-by-doing e�ects, and innovation spillovers, reducing the future cost of

avoiding emissions (Gillinghamand Stock 2018). Finally, the cost of future abatement crucially

depends on investment decisions taken today (Erickson et al. 2015; IPCC 2014a; IRENA 2017a),

and therefore on expectations about future policies. Given the inherent uncertainties in the

political economy process, it is by nomeans clear that all actors believe in the enforcement of

the Paris Agreement.

Using di�erent models and data sources, this thesis examines and connects some of these

aspects. It sheds light on future policies and their broader economic implications; on how

investors’ expectations of climatepolicies are shapedby thepolitical process; andon investors’

strategies to deal with climate policy risk. When assessing the economic consequences of

future climate policy, one guiding idea of this thesis is the role of economic input factors. It

can therefore also be read as a story on the enabling factors of decarbonization, touching

upon capital allocation, availability of skilled labor, and green technology.

The first and second chapters look at financialmarkets and their expectations of climate policy.

It is part of the core business of financial markets to price in expectations about the future.

However, researchers, activists, central banks, and investors themselves have voiced the

concern that the “transition risk” due to climate policymay not be fully priced in. The resulting

delay in investment shi�s can lead to a lock-in of fossil infrastructure, andmake the transition

to clean capital more expensive (Erickson et al. 2015; IRENA 2017b). Moreover, a sudden

devaluation of assets following stricter climate regulation could then lead to substantial

losses in financial markets, implying a risk for financial stability (van der Ploeg and Rezai 2020;

Battiston et al. 2017; Batten et al. 2016; European Systemic Risk Board 2016a; HSBC 2012). It

is therefore vital to understand what shapes investors’ expectations with respect to climate

policies, and how they deal with transition risks.

Chapter 1 aims to answer the question what investors’ priors are regarding future climate

policy, and how these priors are changed by new information. It tracks the evolution of a

climate-related policy proposal in Germany and the reactions in financial markets. Following

pressure from lobby groups and coalition partner politicians, the proposal was transformed

from a carbon pricing instrument to a compensation scheme: Companies would receive

payments for not running their emission-intensive power plants. Compensations have been

suggested in various climate policy contexts, such as to enable international climate agree-
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ments, reduce the cost of emission reductions, prevent carbon leakage, and avoid stranded

assets (Harstad 2012; Peterson and Weitzel 2014; Collier and Venables 2014). In the context at

hand, compensations were an attempt to reconcile di�erent interests. Such political economy

processes are not rare: investors have good reasons to expect a “bail-out”. Chapter 1 thus

highlights how the expectation of a compensation can cause financial markets to remain in

fossil investments.

The second chapter studies a particular type of transition risk: technological risk. Innovation

for clean technologies is a key component of worldwide decarbonization, and innovation

today crucially influences future abatement cost. To align with climate goals, technological

change is likelymore relevant thanownemission reductions in somesectors (e.g., automotive).

Do financial markets expect and address technological risk? To answer this question, Chapter

2 turns to the active role of institutional investors, such as asset managers or pension funds,

in the context of climate action. With their large owner shares and dedicated personnel,

institutional investors can influence firms via direct conversations, or change voting outcomes

inannualmeetings. Theycanalsobeconducive to innovatione�ortsbybridging timesof costly

R&D investments which a�ect firm performance in the short run (Aghion et al. 2013; Bushee

1998). A growing literature provides evidence for successful engagement in environmental

contexts (Dyck et al. 2019; Dimson et al. 2015; Azar et al. 2020). These outcomes seem to reflect

the concern about transition risk that many institutional investors have expressed. According

to a recent survey, 84% of investors consider technological risk to be financially relevant today

or within the next 5 years (Krueger et al. 2020). Using patents in green and fossil technologies

as outcome variables, Chapter 2 thus tests whether institutional investors have an impact on

the direction of firms’ innovation.

The third chapter shi�s the focus to future policy implementation. It looks at a case where

an individual region plans to take climate action in its own hands and decarbonize its en-

ergy sector until 2035. The aim of the study was to develop amodel to quantify the regional

economic e�ects of such an endeavor, taking into account inter-industry linkages via inter-

mediate goods. Together with further interdisciplinary analyses, the results of this study are

feeding into the policy process in the region.1 Beyond this direct use in local policymaking,

the regional analysis provides a helpful case study for ambitious policies based on precise

local data on natural resource availability and regional economic structures.

1 See also the “INOLA tool for value added and employment e�ects”, https://inola-region.de/hp877/IN
OLA-Tool-fuer-Wertschoepfungs-und-Beschaeftigungseffekte.htm.
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The chapter provides amethodological framework to study value added and employment

e�ects of increased investments in renewable energy sources. Previous studies have largely

focused on the initial impacts of the investment only, and ignored crowding-out e�ects. In

our approach, we explicitly model the use phase of the new investments as well as scarcity

of factors of production. Chapter 3 therefore draws attention to the availability andmobility

of labor and capital as enabling factors for energy system transformations. The analysis

is a useful case study in the current Covid-19 recession. To counter the e�ects of Covid-19

measures, (green) fiscal stimulus programs are being designed. Since the studymodels energy

policy as exogenous increased investment in renewables, the implications are comparable to

those of economic stimulus programs. These should therefore address non-financial barriers

to renewables expansion, e.g. skilled labor shortage; be aware of the spatially heterogeneous

conditions and e�ects; and address the mobility of labor between sectors and regions.

In the following, I provide an overview of each chapter.

Chapter 1, co-authored by Suphi Sen,2 explores whether and how investors price in the risk
of asset stranding due to specific climate policies. We exploit the gradual development of

a climate policy proposal in Germany which targeted the most emission-intensive type of

electricity production: lignite-fired power plants. If they are phased out, both the power plants

as well as the lignite deposits situated next to them become stranded assets. We investigate

how the steps in the policy process have a�ected the market valuation of firms active in

electricity production from lignite. In a short-run event study analysis, we examine whether

there are abnormal returns associated with the events. To ensure identification of the event

e�ect, we control for contemporaneous shocks at the firm and industry level, and we test

di�erent counterfactuals, i.e. the market index and a synthetic control group.

We find that investors did not react to announcements of the initial “climate levy” proposal,

which was directed at stranding lignite assets by charging an extra fee on carbon emissions

(Stage 1). When the proposal was turned into a compensation mechanism (Stage 2), paying

plant owners for not running their units, this did not have a significant e�ect on stock valua-

tions either. Only announcements that the compensation mechanismmight not go through

due to violating state aid rules (Stage 3) resulted in a significant and negative reaction. This

suggests that investors have already priced in the stranded asset risk, but they also expect

2 Chapter 1 has been published in the Journal of Environmental Economics and Management (Sen and von
Schickfus 2020).
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a compensation mechanism for the a�ected firms. We further support this interpretation

by showing strong reactions in electricity future markets to the initial proposal, indicating

that it surprised participants in these markets; the non-reaction in stock markets can best be

explained by compensation expectations.

With our research, we contribute to the literature on financial markets and transition risk.

Our paper is the first to look at the role that individual climate policies play for investors’

expectations. More importantly, we find two results which are relevant for the discussion

on stranded asset risk and climate policy design. First, we conclude that financial market

investors seem to follow the climate policy process. The concern that investorsmay be “blind”

to carbon risk (Leggett 2014) can therefore be allayed somewhat. However, our second result

shows how investors trust in political economy and lobbying success, and that they expect

firms to be compensated for stranded assets. Therefore, financial markets are still likely to

misallocate resources instead of channelling them away from fossil assets.

Compensations, then, are almost a self-fulfilling prophecy: if they are expected, they will

be necessary in order to avoid larger shocks. It is therefore essential for policymakers and

researchers alike to understand the interaction between policy making and investors’ expec-

tations when designing climate policies aimed at fostering a transition to clean capital. A

credible commitment to non-compensation, combined with a clear pathway toward clean

capital, may be a way to avoid macro shocks as well as costly compensation payments.

Chapter 2 uses an international firm-level panel to test for the impact of institutional investors
on climate-relevant innovation in firms. Policy-accelerated technological change entails a

risk for firms relying on fossil-related technological knowledge. The question of Chapter 2

is whether institutional investors address this technological risk as part of their climate risk

strategies.

Institutional investors play an increasingly large role in equity markets, and have been shown

toa�ect the firms they invest in throughengagement: they canexert influenceonmanagement

appointments, strategic decisions, and even CO2 emissions and environmental, social and

governance (ESG) ratings (Appel et al. 2018; Dimson et al. 2015; Dyck et al. 2019; Azar et al.

2020). Many large investors have joined initiatives for sustainable or responsible investment;

according to a recent survey, the concern about technological risk is relevant for their risk
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assessments, and their preferred strategy to deal with this risk is to engagewith firms (Krueger

et al. 2020).

Contributing to the literature on climate risk in financial markets, the analysis in Chapter 2 is

only the second paper to empirically assess the e�ects of institutional owners’ engagement on

climate-relevant outcomes in firms.3 I add to this literature by usinggreen and fossil innovation

as an outcomemeasure, and thus providing insights on investors’ awareness of technological

risk.

Using an international panel covering 1,261 firmsover the years 2009-2018, I employ adynamic

panel data approach in the spirit of Aghion et al. (2016). Patenting depends on previous

knowledge, knowledge spillovers, and R&D e�orts; the share of institutional ownership is

added as an additional explanatory variable. The model includes firm fixed e�ects using

the pre-sample meanmethod (Blundell et al. 1999). To control for patent quality, I focus on

granted patents filed at one of the main patenting o�ices (EU, US, Japan). To account for

potential bias through endogenous selection of investors, I apply a control function approach.

A firm’s institutional ownership share is instrumented by the inclusion of the firm in a large

stock index.

Despite robust evidence for increased overall innovation with more institutional ownership, I

find no evidence for institutional owners’ influence on green or fossil patenting, neither in

the energy nor in the transport sector. This also holds for investor types for which we would

expect a stronger interest in the issue, such as signatories of the UN Principles for Responsible

Investment (UN PRI) initiative. Green innovation is found to be positively associated with

climate-related topics mentioned in firms’ conference calls with investors. It is di�icult to

interpret this as a causal e�ect. Nevertheless, the result shows that there is su�icient variation

in the data to measure a nonzero relationship between the importance of climate issues

in firms, and firms’ green innovation activities. I therefore conclude that the insignificant

e�ect of institutional owner shares can likely be interpreted as a zero e�ect. The timing of

the analysis may still be an issue: Climate risk has probably not been at the top of investors’

minds especially in the beginning ofmy sample. Since the awareness for climate risk has been

increasing in the last years, repeating the analysis in the future may deliver di�erent results.

3 The only other paper to do so – to the best of the author’s knowledge – is Azar et al. (2020), who measure
the influence of the Big Three index investors (BlackRock, Vanguard, and State Street) on firm-level carbon
emissions.
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Chapter 3, co-authored by Ana Maria Montoya Gómez and Markus Zimmer,4 analyzes the eco-
nomic e�ects of regional decarbonization e�orts. The subject of our research is the southern

German “Bavarian Oberland” region (∼400,000 inhabitants), which has set itself the target of
meeting their electricity and heat consumption with own renewable sources by 2035. This

commitment requires substantial investments in renewable energy and storage capacity as

well as energy e�iciencymeasures. We consider both the installation and the use phase of the

required investments and examine their e�ects on regional value added and employment di-

vided in three qualification levels (low-skilled, medium-skilled and high-skilled employment).

Wemodel energy policy as an exogenous increase in investment in renewable energy sources,

and otherwise assume a finite availability of factors of production (capital and labor). Based

on the Rybczynski theorem, we use the approach developed by Fisher and Marshall (2011)

and Benz et al. (2014) to calculate an international Rybczynski matrix, which yields sectoral

changes in output for an increase in factors of production. The main channel of these e�ects

are the direct and indirect (via intermediates) factor requirements of the di�erent sectors:

following an endowment change in one specific factor, all other factors need to reallocate

between sectors for maximum aggregate output.

Our twomain contributions are to apply thismethodology to the energy context, and to adjust

it to the regional level. First, to use themethodology for an energy-economic question, we

combine disaggregated economic data for the energy sector and incorporate the assumption

of sector-specific capital. This allowsus to calculateRybczynski e�ects of four capital types, i.e.,

capital specific to four renewable energy technologies. Second, we produce a multiregional

input-output table (consisting of the three districts of the region, and the rest of Germany)

including a disaggregated energy sector. We also adapt the methodology to improve its

performance in a regional context. In combination, this enables us to quantify the e�ects of

additional investment in renewables specifically for the Oberland region.

With this approach, we go beyond traditional input-output multiplier analysis o�en used

in regional economic analyses, where any investment creates additional demand, but no

crowding-out or reallocation of resources takes place. We argue that such reallocation e�ects

are important, and that it is relevant to know which sectors or regions may be negatively

a�ected. We also highlight the importance of considering both the investment and the opera-

tion phase in an analysis of economic e�ects. Our methodology o�ers a relatively easy way

4 This paper is available in the CESifo Working Paper Series (Montoya Gómez et al. 2020).
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to model e�ects of factor scarcity and could be used for many other regional-economic and

energy-economic applications.

We find that the three districts in the Oberland region benefit from investments towards

the regional energy transition, both in terms of additional value added and employment.

The benefits vary by district mostly due to availability of natural resources and location of

relevant intermediate input providers. Yet, the overall positive development comes at the

expense of value added and employment in the rest of Germany. Moreover, our analysis shows

that medium-skilled employment increases most across all scenarios. Due to the low labor

intensity of renewable power generation, the employment results aremostly driven by sectors

providing intermediate inputs, most notably construction and trade. This finding shows the

importance of medium-skilled, sector-specific labor for a successful energy transition. In our

model, the additionally required labor force can be drawn from the rest of the country. In case

of an economy-wide investment increase in renewables, this possibility would be limited.

In summary, this thesis assesses the economic implications of future climate policy, with

a particular focus on the required input factors for the transition to a Paris-aligned world.

It provides insights on capital allocation mechanisms and investment e�ects, shows the

importance of skilled labor to complement investments, and examines the influence of future

policy expectations on green innovation. By highlighting the role of these enabling factors

and of expectations, especially for capital allocation in financial markets, it calls for an early

commitment to (specific) climate policies. In addition, against the current background of the

Covid-19 recession and the ensuing economic stimulus packages, the insights of this thesis on

limiting factors besides investment money are relevant for the design of stimulus programs

which deliver for the economy as well as for the climate.

Keywords: Stranded assets, climate policy, expectations, utilities, event study, green

innovation, patents, panel analysis, green finance, climate risk, intangible

assets, institutional investors, renewable energy, crowding-out, regional

economics, input-output analysis

JEL-No: C67, G14, G23, O34, Q35, Q38, Q43, Q55, R15
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1 Climate Policy, Stranded Assets, and Investors’
Expectations

1.1 Introduction

As early as 2012, global financial services companies drew attention to the risk of coal invest-

ments becoming stranded as a consequence of the 2◦C “carbon budget.”1 This carbon budget

specifies the maximal amount of cumulative carbon emissions that can be emitted without

surpassing a 2◦C temperature increase above the preindustrial levels (Meinshausen et al. 2009;

Allen et al. 2009). Therefore, climate policies might render fossil-fuel assets worthless prior to

the end of their economic life time. We study whether the current market valuation of compa-

nies owning fossil fuel assets reflect this risk of stranding assets.2 A failure to price in this risk

can lead to costly consequences for the whole economy. First, the resulting misallocation of

capital due to delayed divestment could render the transition to clean capital more expensive

(IPCC 2014a; IRENA 2017a). Second, a sudden and unexpected tightening of carbon emission

policies (Batten et al. 2016) or sudden changes in expectations in the presence of tipping

points (Krugman 1991) can lead to abrupt repricing of fossil fuel assets. This situation can

result in a negative supply shock through changes in energy use and second-round e�ects in

financial markets.3 Financial institutions such as the Bank of England, the Dutch Central Bank

(DNB), the Inter-American Development Bank (IDB), and the European Systemic Risk Board

(ESRB) have identified the mispricing of stranded asset risk as a potential systemic risk and

threat to financial stability.4

1 For example, see the report by HSBC on “Coal and Carbon. Stranded Assets: Assessing the Risk,” picking up
on the 2011 report by the Climate Tracker Initiative on “Unburnable Carbon – Are the World’s Financial Markets
Carrying a Carbon Bubble?”
2 See Caldecott (2017) for various definitions of the term “stranded assets”.
3 Weyzig et al. (2014) analyze the risk associatedwith the carbon bubble, and conclude that a slow and uncertain
transition to clean energy is likely to be costlier than a quick transition.
4 See Batten et al. (2016), Schotten et al. (2016), Caldecott et al. (2016), and European Systemic Risk Board
(2016a). Bank of England governor Mark Carney warns “..., once climate change becomes a defining issue for
financial stability, it may already be too late” (speech given at Lloyd’s of London, September 9, 2015). Tomitigate
the risk, the Finance Ministers and Central Bank Governors of the Group of Twenty (G20) requested the Financial
Stability Board to create an industry-led Task Force on Climate-Related Financial Disclosures (TCFD 2017). The
private sector is becoming increasingly aware and active as well, with, for example, the rating agency Moody’s
announcing that it will analyze firms’ carbon transition risk in its credit ratings (Moody’s 2016).
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Therefore, we analyze the interaction between investors’ expectations and the development of

climatepolicies. Investors’ reactions tonewpolicies dependon their prior expectations, which,

in turn, are shaped by previous policies. This interaction is central to the current paper: What

are investors’ priors regarding stranded asset risk, and (how) do these priors change when

climate policy proposals are announced? In particular, we analyze (i) whether investors have

already priced in expected losses due to the carbon budget, (ii) whether they only respond

to concrete policies, and (iii) whether they expect firms to be financially compensated for

stranded assets. To answer these questions, we exploit the gradual development of a climate

policy proposal in Germany targeting lignite assets and investigate how adjustments of this

proposal have a�ected the market valuation of firms active in electricity production. We

find that investors did not react to announcements of the initial “climate levy” proposal,

which was directed at stranding lignite assets by charging an extra fee on carbon emissions

(Stage 1). Investors also did not respond when the proposal transformed into a compensation

mechanism (Stage 2), paying plant owners for not running their units. Only announcements

that the compensation mechanismmay not go through due to violating state aid rules (Stage

3) resulted in a significant and negative reaction. Our findings show that investors do care

about the stranded asset risk, but with an expectation of a compensation mechanism.

Our analysis starts from the notion that the evolution of climate policies and the expectations

of investors are interrelated. First, climate policies and policy proposals provide signals that

shape how the investors percieve the stranded asset risk. For instance, setting a price on

CO2 emissions or imposing a cost on fossil resource extraction5 can reduce demand, slow

down investment in fossil infrastructure, and cause asset stranding. Alternatively, policies

addressing fossil-fuel reductionsmay compensate fossil-fuel owners for leaving their reserves

unburned. For example, Harstad (2012) proposed that, in the absence of a global climate

agreement, “the coalition’s best policy is to simply buy foreign deposits and conserve them”.6

Second, investors’ reactions to policy signals depend on their prior expectations regarding

the likelihood of asset stranding and the credibility of climate policy announcements. For

example, they may have already devalued assets following information on the carbon budget

implied by the Paris Agreement, or theymay find it di�icult to translate the concept of a carbon

5 For instance, by reducing subsidies or imposing taxes on production, exports, or capital rents (Faehn et al.
2014; Richter et al. 2015; Sinn 2008).
6 Such as the failed compensation attempt for the oil under Yasuni National Park in Ecuador. Compensation
mechanisms have been suggested in various contexts, such as to enable an international climate agreement,
reduce the cost of emission reductions, prevent carbon leakage, and avoid stranded assets (Harstad 2012;
Peterson and Weitzel 2014; Collier and Venables 2014).
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budget into stranded asset risk.7 In the latter case, they would wait for further information on

climate policies with clear asset stranding implications. Even the announcement of climate

policies does not necessarily lead investors to reassess the likeliness of asset stranding, if

they expect a compensation mechanism. The policy proposal we investigate provides the

opportunity to disentangle the e�ects of these policy signals and expectations. By tracking

the stock market response to di�erent stages of the proposal, we can draw conclusions about

investors’ prior expectations and how they evolved in the course of the policy’s development.

Our baseline estimation strategy is a short-run event study analysis. We investigate whether

there are abnormal returns to the assets of three publicly listed energy companies that can be

associated with the three stages of the policy proposal.8 The pattern in the reactions to the

di�erent stages of the proposal helps us to identify whether an individual event surprised the

investors. Furthermore, we test for e�ects in the power futures market to establish surprise

empirically. Finally, we provide anectodal evidence for our empirical findings on the presence

of surprise. We provide an extensive robustness analysis related to the identification of the

event e�ects. First, we conduct placebo tests for the nonevent days just prior to the event

days to verify themodel’s performance in predicting the counterfactual returns. Second, as an

alternative to using amarket price index to control for averagemarket conditions, we estimate

a synthetic portfolio aiming to produce a counterfactual control unit.9 These estimations

show that our results are not driven by the endogeneity of the market price index to the event

shocks. Third, in order to control for industry-wide shocks, we use an energy utility company

without any lignite-related assets as the control unit, leading to a di�erence-in-di�erences

estimation of abnormal returns. Finally, by using a news search engine, we identify a small

number of potentially confounding events and verify that our results are not driven by these

events.

Our paper contributes to the literature on empirical assessments of market reactions to

emission reduction policies, o�en in the form of event studies. Lemoine (2017) and Di Maria

et al. (2014) find that market players do act in anticipation of demand-side policies. Ramiah

et al. (2013) and Linn (2010) show that stock investors react to announcements of national
7 See Rook and Caldecott (2015) for how a wide range of cognitive biases in the decision-making process of oil
industry managers can hamper risk perceptions and exacerbate the risk of asset stranding.
8 Short-run event study methodology has been a widely employed approach in identifying how specific events
a�ect asset returns. See MacKinlay (1997) for a comprehensive description of event study methodology.
9 See Abadie and Gardeazabal (2003) and Abadie et al. (2010) for the synthetic control approach. We apply this
approach to the classic short-run event study methodology. See Guidolin and La Ferrara (2007) for a similar
approach.
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carbon emission pledges or the introduction of emission trading programs, respectively.

Koch et al. (2016) find evidence that regulatory events drove EU ETS allowance prices. In the

German power market context, Oberndorfer et al. (2013) investigate the stock market e�ects

of voluntary actions such as the inclusion of firms in a sustainability stock index. However, to

date, investor expectations with regard to specific policies directed at stranding assets or to

compensation mechanisms have not been studied.

There are few papers investigating empirically how investors price in unburnable carbon risk.

Batten et al. (2016) conclude that the announcement of the Paris Agreement in December

2015 had a positive e�ect on the valuation of renewable energy companies, but no significant

e�ect on fossil fuel companies. Mukanjari and T. Sterner (2018) report similar results both

for the Paris Agreement and the U.S. presidential election in 2016. Gri�in et al. (2015) find

that the publication of the Meinshausen et al. (2009) article in Nature led to a statistically

significant, yet fairly small, reduction in the stock returns of oil and gas firms. They mention

several reasons why this e�ect might be so small. One reason is investors’ expectations with

respect to technological developments: this is what Byrd and Cooperman (2016) examine,

concluding that investors are aware of the relevance of carbon capture and storage (CCS) in

allowing continued carbon use, but that they have already priced in stranded asset risk. A

second potential reason is that investors are more concerned with specific energy policies,

which is what this article examines in detail.

The remainder of the paper is organized as follows: Section 1.2 describes the development of

the specific German policy proposal and the a�ected companies. In Section 1.3, we present

a theoretical discussion on the potential e�ects of the proposed policies. In Section 1.4, we

present di�erent scenarios with regard to investors’ expectations. The empirical methodology

is outlined in Section 1.5, and Section 1.6 presents themain results. We present the robustness

tests in Section 1.7. Section 1.8 presents a general discussion of our results, and Section 1.9

concludes.

1.2 Event description

We track investors’ reactions to eachof the three steps in thedevelopment of aGerman climate

policy proposal known as the “climate levy” (Klimabeitrag) that was first publicly announced

in March 2015. The development of this proposal provides a convenient empirical setting

4
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for investigating investors’ expectations. Each stage in the development of this proposal

represents a di�erent event within our analysis. The first stage of the policy development, the

introduction of the climate levy proposal, was designed to retire lignite assets. The second

stage is the amendment of the proposal to include a compensation mechanism. In the third

stage, the compensation mechanism came under o�icial scrutiny for being inconsistent with

the EU state aid rules.

Event study methodology is a widely employed approach to analyze the e�ects of regulatory

changes or policy announcements (Lamdin 2001). In regulatory event studies, it is necessary

to identify the potential dates on which new information might have changed investors’

expectations (Binder 1985a). We extensively examined several news search engines to identify

the date on which the related information regarding each stage of the proposal might have

been publicized in the media. In the next stage, we carefully searched for (i) prior events

which might have led to information leakages, and (ii) later events which might represent an

additional piece of information for investors’ assessment. Our search resulted in three or four

announcement dates for each stage. Table 1.1 presents the stages of the policy proposal and

the announcement dates in their chronological order. In the remainder of this section, we

describe the proposal development, our strategy to establish surprise for each of the stages

of the proposal, and some important characteristics of the a�ected companies.

Stage 1: Climate levy proposal - uncompensated policy: In March 2015, the German Ministry of

Economy and Energy presented its first proposal of the climate levy legislation. This proposal

suggests charging an extra levy on CO2 emissions from all power generating units older than

20 years whose emissions exceed a certain yearly threshold (a levy-free allowance). The aim

of the proposal was to save 22 million tons of CO2, as Germany needed to cut emissions from

the electricity sector by that amount in order to reach its national emission reduction targets.

The climate levy proposal directly targeted the stranding of assets by focusing on old units

and incentivizing non-use if the allowance is exceeded. The excess levy was to be applied

independently of technology. Therefore, the most emission-intensive energy carrier, lignite,

would have been the most, or the only one, a�ected.10

German lignite power plants are designed to provide base load electricity. They are all situated

next to mines, since lignite is essentially not transported over long distances due to the high

10 For the details and implications of the climate levy, see, e.g., Peterson (2015), Bundesministerium fürWirtscha�
und Energie (2015), and Oei et al. (2015). Lignite provided 24% of German electricity production in 2014.
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Table 1.1 : Event Dates

No Date Events and Announcements

Stage 1: Climate levy proposal
(1a) March 20 First news on climate levy proposal
(1b) March 26 Climate levy proposal presented in parliament
(1c) May 19 Ministry provides new, less stringent proposal for climate levy

Stage 2: Security reserve proposal
(2a) May 23a IG BCE trade union presents proposal of turning lignite plants into capacity reserve
(2b) May 28 Media reports that Ministry is positively considering the IG BCE proposals
(2c) June 24 Minister debating between two options: climate levy and security reserve. Coalition

summit will decide on July 1
(2d) July 2 Press reports: Coalition summit decided on security reserve

Stage 3: State aid assessments
(3a) July 23b Academic service of German Parliament assesses security reserve as violating EU state

aid rules
(3b) August 14 Media reports on the state aid assessment
(3c) September 14 European Commission considers state aid procedure
a The date of Announcement (2a) corresponds to Saturday. In our estimations, we take its announcement date
as the following Monday. Note that events (2a) and (2b) are very close andmay overlap depending on the
event window.

b This is the date of the report; it seems that the media reports on August 14 were the first public news on this
topic.

transport cost per energy content. O�en, operators of lignite power plants own and operate

the mines. Thus, if the power plant is not run, then the fuel input of the plant is le� in the

ground. Consequently, a policy targeting CO2 emissions from lignite strands the power plant

assets as well as their fuel resources.

The climate levy proposal was the first stage of the policy development and we classify this

proposal as an “uncompensated policy.” Unsurprisingly, the proposal sparked protest among

industry, trade unions, and politicians. In response, the Ministry presented an amended

proposal in May 2015, permitting operators to transfer the allowances to other installations,

and allowing some flexibility in the levy price. However, this was not enough to placate the

levy’s opponents.

Stage 2: Security reserve proposal – compensated policy: Only a few days later, the trade union

for mining, chemicals, and energy (IG BCE) presented its own proposal, which was to turn

six Gigawatts of lignite capacity into a capacity reserve. That is, they suggested to take this

capacity out of the regular electricity market, pay them for holding capacity ready, and use

the capacity only in the case of unexpected shortfalls. This marks the beginning of the second

6
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stage of the policy development. Following IG BCE statements that the Ministry was positively

considering this alternative proposal (May 28), various newspapers reported that the climate

levywould not be introduced (June 6). On June 24, Minister Gabriel declared that both options

were currently on the table for discussion and that the coalition summit would decide. On July

2, 2015, the federal coalition decided at its energy summit not to introduce the climate levy,

but a security reserve (Sicherheitsbereitscha�, literally security readiness11), mothballing

2.7 Gigawatts of capacity.12 The targeted units were equivalent to 13% of installed lignite

capacity and were supposed to be compensated for their foregone revenues (to be financed

via network fees) until they were gradually decommissioned.

Stage 3: State aid assessments – challenge to the compensation: It turned out that the com-

pensation proposal had to overcome another hurdle, which brings us to the third stage. In

July 2015, the German Parliament academic service concluded that the security reserve could

violate EU state aid rules. Spiegel onlinewas the first to report this state aid assessment on

August 14, stating that it could cause the security reserve plans to fail. On September 14,

the European Commission announced that it was considering a state aid procedure on the

security reserve plans. We classify this news as a “challenge to the compensation”.

Surprise. Event studies aim to understand whether investors use new information revealed by

an event (surprise) in their valuation of firms. In the absence of any confounding events, a

significant market reaction indicates that the announcement of interest contains a surprise

element. On the other hand, absence of reaction might simply mean that the announcement

does not constitute a surprise. Our empirical design is a novel approach which helps to

understand the nature of surprise element in the announcements by tracking reactions to a

sequence of related events. The idea is that, significant reactions for some events inform us

about the expectations of investors in certain periods, which can be useful to figure out the

expectations of investors before and/or a�er a related event with nomarket reaction. This

indirect information can be helpful to understand whether an event with nomarket reaction

did contain a surprise element or not.

In such a sequential event study analysis, it might be important to establish surprise for the

first announcement, as there is no previous event to track a change in expectations. Press

11 The term“capacity reserve” (Kapazitätsreserve) describedanothermechanism in the energymarket legislation
and thus could not be used to describe the mothballing of lignite power plants.
12 The term “mothballing” is used for power plants (or any other production facilities) that are not in operation,
but preserved for potential future use.
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reports on the first announcement of the proposal give interesting insights. According to the

weekly newspaper Der Spiegel, the first public news on the climate levy proposal were the

result of a leak a couple of days before the o�icial presentation of the proposal (see Table 1.1).

Minister Gabriel, of the Social Democrats (SPD), had not even informed the coalition partner

(the Christian Democrats, CDU) about the proposal. Irritated by this “rush” without prior

consultation, the CDU called o� a plannedmeeting of energy experts from both parties.13 If

not even all government members were aware of the proposal, it is unlikely that markets had

prior knowledge of it. In Appendix A.1, we show that this point is supported by the googling

trends for the term “Klimabeitrag” (climate levy) in Germany between January and September

2015. The patterns show that this was not a marginal topic — we observe a general public

interest in the issue coinciding with the event dates we identified. The term “Klimabeitrag”

became a trend only a�er the first news on the proposal which we identified. The search

pattern does suggest that the first announcement of the proposal came as a surprise. The

details are provided in Appendix A.1.

A�er presenting our baseline results in Section 1.6, we empirically establish whether there is a

surprise or not for all stages of the policy proposal by following three strategies: (i) analyzing a

sequence of related events as explained earlier, (ii) providing an extensive analysis to rule out

that significant market reactions are not driven by confounding events, and (iii) tracking the

intensity of market activity for electricity futures, based on the idea that the initial proposal

would result in a significant reduction in baseload electricity capacity a�er 2016. The third

strategy turns out to be particularly useful in establishing surprise for the initial stage. Our

empirical findingson thepresenceof surprise are in linewith theanecdotal evidencepresented

previously.

Companies.We focus on the three publicly listed German companies that were active in the

lignite business in 2015: RWE AG, E.ON SE, and EnBW AG.14 The climate levy proposal targeted

plants older than 20 years and was intended to be implemented in 2017. Considering the

share of each firm’s lignite plants that were commissioned before 1997 in its overall electricity

generation capacity, RWE was the most lignite-intensive electricity producer. The share of

lignite plants older than 20 years in RWE’s total capacity was 31% by 2015. For E.ON, this

13 See http://www.spiegel.de/wirtschaft/service/gabriel-neue-klimaschutzabgabe-fuer-kohl
ekraftwerke-geplant-a-1024554.html.
14 Twomore firms were operating with lignite: Vattenfall GmbH and Mibrag mbH. As they are not publicly listed,
we cannot consider them in the event study.
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share would have been 8%.15 On the other hand, EnBW holds shares only in one plant that

was commissioned in 1999 and thus the policy proposal would not a�ect EnBW. Moreover, in

contrast to RWE, which largely owns the lignite mines next to its plants, E.ON and EnBW only

operate the power plants and buy the fuel from amine operator. Therefore, their stranded

asset risk is limited to their power plants, whereas RWE would have had to strand its fossil

assets as well.

While the climate levy proposal did not target specific plants (apart from selecting by age), the

security reserve proposal clearly specified the individual plants scheduled for mothballing.16

Of the three publicly listed companies, only RWE was a�ected by this bill: two of its units in

Frimmersdorf were scheduled to bemothballed onOctober 1, 2017, two units in Niederaußem

on October 1, 2018, and one unit in Neurath on October 1, 2019. The final decommissioning is

always scheduled for four years later. Nevertheless, E.ON was impacted by the coalition deci-

sion on the security reserve because it implied that the climate levy would not be introduced.

All announcements related to a potential state aid procedure against compensation plan are

relevant for all lignite-owning companies because they introduce uncertainty about future

policies.

1.3 Theory

In this section, we use a simple theoretical setup in order to provide intuition for the potential

e�ects of the proposed policies and give a feeling for the magnitude of their e�ects on the

profits of the firms. We focus on RWE for brevity. In the following, we start by describing

the economic environment, how wemap this environment to data, and our policy scenarios.

Finally, we present the theoretical predictions from our scenario analyses.

1.3.1 Environment

We assume that demand is fully inelastic and firms operate in a perfectly competitive market.

Each firmdeterminesoutputbymaximizingprofits subject to the capacities of their plants. The

numberofplantsownedbya firmand their generationcapacities areexogenous. In this setting,

the so-called merit order of various technologies determines the supply curve, such that the

capacity with lower marginal cost of producing power has priority in meeting the demand for
15 The underlying data for these calculations is described in the next section.
16 See Table A.2 in the Appendix for a list of units to be transferred into the security reserve.
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Figure 1.1 : Electricity supply and demand
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Notes: This figure illustrates the demand and supply curves implied by our theoretical setup. The technologies
are ranked by their average variable costs calculated from IEA (2015).

energy. In our baseline analysis, we assume that themarginal cost of producing electricity

is constant and technology specific. Generated electricity from renewables has priority in

meeting electricity demand, because renewable electricity generation is characterized by low

operating costs and high volatility in its capacity utilization. Therefore, market clears where

conventional power capacity meets the residual load given by total load minus electricity

generation from renewables.

We illustrate this theoretical framework in Figure 1.1, where Q stands for hourly residual

demand. We rank the conventional technologies by their average variable costs (AVC), which

we obtain from the IEA report “Projected Costs of Generating Electricity 2015” (IEA 2015).17

The IEA’s data imply that nuclear comes first in the supply schedule, followed by lignite, hard

coal, and gas. We provide further details about the AVCs in the next subsection. Appendix

A.2.2 presents further empirical evidence supporting themerit order of these conventional

technologies.

In the depicted situation, the marginal technology is hard coal, such that the market equi-

librium is determined by the marginal cost of producing power from hard coal. The infra-

marginal technologies are nuclear and lignite, which operate at their full capacity. They

becomemarginal technologies at hours with low residual load. The gas capacity operates at

peak-load hours when the residual demand is high.

17 See Tables 3.9, 3.10, and 3.11 in IEA (2015).
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1.3.2 Estimation of themerit order curve

In this section, we describe how we map our economic environment to data. We conduct

this analysis in two steps. First, we determine the ranking of conventional technologies in

the supply schedule as breifly explained in the previous subsection. Second, we estimate

technology specific supply curves by using data onmarket prices. Next, we explain each of

these steps in detail.

As we will illustrate later in this section, our policy scenarios mainly change the ranking of

some part of the lignite capacity in the supply schedule. Therefore, we need to be able to

identify which generation capacities are subject to our policy shocks. Unfortunately, we do

not have the required data to achieve this identification at the level of capacity unit or at the

plant level. However, our assumption of technology-specific constant marginal cost enables

this analysis in two ways. First, we can rank the conventional technologies by their AVCs from

the IEA data. Second, as the marginal cost is assumed to be constant for each technology,

which part of the lignite capacity is replaced by the shock is irrelevant. The AVCs based on

the IEA data are depicted in Figure 1.2.18 We impose the illustrated ranking of conventional

technologies throughout our analysis. However, we do not prefer to use the AVCs themselves

as an approximation for the merit order curve. The reason is that the AVCs are not completely

in line with the market outcomes within our theoretical framework, which we show in the

following.

Under an inelastic demand assumption, the functional relation between electricity prices and

residual load traces a supply curve.19 Figure 1.2 also presents the observed prices and the

average prices within each technological supply range.20 The average price where hard coal

is assumed to be the marginal technology is quite close to the AVC of hard coal. However,

there are considerable di�erences between the AVCs and the average prices in the case of

lignite and gas. Therefore, we conduct our analysis with the average prices bymaintaining

18 In calculating these average variable costs, we include the fuel, carbon, andoperational andmaintenance costs
reported in IEA (2015). However, we set the carbon price to $10 per tonne of CO2 which is a rough approximation
of the ETSprice in 2015, instead of a $30 per tonne of CO2 carbonprice assumedby IEA. The range of technological
capacities are given by their net installed generation capacities obtained from thewebsite of Fraunhofer Institute
for Solar Energy Systems (ISE). See https://www.energy-charts.de/index.htm.
19 See, for example, Bessembinder and Lemmon (2002) and Cludius et al. (2014) for estimations of electricity
supply curve from data onmarket outcomes.
20 We obtain the residual load and price data at hourly resolution from the Open Energy Modeling Initiative
(OEMI 2019). The prices are the day-ahead prices in the European Energy Exchange (EEX) for the German power
market. Appendix A.2.1 presents further details about this dataset.
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Figure 1.2 : Electricity prices and residual load
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Notes: This figure illustrates the hourly prices and residual loads in 2015 for Germany. The prices are the day-
ahead prices in the EEXmarket, which are truncated at the upper and lower 2nd percentiles. The technologies
are ranked by their AVCs, which we obtain from IEA (2015). The residual-load range that is met by a specific
technology is determined by the generation capacities of technologies. The residual load is given by total load
minus generated electricity from renewables.

the technology-specific constant marginal cost assumption. We discuss the implications of

this assumption later in this section, and provide results from relaxing it in Appendix A.2.4.

One obvious problem in Figure 1.2 is that there are not enough observations for the nuclear

capacity, which means that it is rarely the marginal (price-setting) technology. We circumvent

this problem by assuming that its marginal cost is equal to the minimum of the predicted

supply curve for other technologies, which corresponds to that of lignite capacity.

1.3.3 Policy shocks

We go on by quantifying the policy shocks to the economic environment described in the

previous subsection. The climate levy would apply to annual emissions in excess of 7 million

tonnes of CO2 per GW installed capacity by plants over 20 years old. The cost of exceeding this

limit was as high as 20 Euros per tonne of CO2. The levy-free emissions would be lower for

older plants, leading to a cap of 3 million tonnes for plants over 40 years old.21 We use the

21 See Oei et al. (2015) for further details.
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Figure 1.3 : Excess emission by plants subject to the climate levy
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Notes: This figure plots the level of excess emissions in 2015 from each plant in Germany against their ages.
Diamonds indicate hard coal plants, and circles indicate lignite plants. The plants of RWE are crossed. There are
three more plants over 70 years old. They are not shown in this figure for clarity. They have very low or zero
excess emissions, and they do not belong to RWE.

2014 plant level data from the Federal Network Agency (Bundesnetzagentur), which provides

the nameplate capacities of each plant in Germany together with their construction dates. In

our calculations related to RWE, we take into account the plants owned by RWE Generation

SE, RWE Innogy GmbH, and RWE Power AG.

We assume that the levy-free emission level for 21 and 41 year-old plants are 7 million and 3

million tonnes of CO2, respectively. We apply linear interpolation to obtain in-between values.

In our scenario analysis, we assume that the climate levy applies to emissions above these

estimated limits. We also assume that emission per capacity is constant for each technology,

andcalculatehourly emissionsbyusing theannual dataonemissionsper installednet capacity

provided at the ISE website. The results from these calculations are presented in Figure 1.3,

where each point represents a plant. Lignite plants are indicated with circles, hard coal plants

are indicated with diamonds, and the plants of RWE are crossed. The vertical axis indicates

excess emissions of a plant that is subject to the fee.

There are two noteworthy observations in Figure 1.3: First, the hard coal capacity is almost

una�ected. Second, the share of the a�ected capacity of RWE in overall a�ected capacity is

very high. Based on our calculations, 48 out of 58 lignite plants and 73 out of 79 hard coal

13
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plants were over 20-years old by 2017. However, the policy is hardly binding for the hard coal

capacity as the average emissions from hard coal plants per GW-installed capacity were 3.4

million tonnes of CO2 in 2015. According to our calculations, the levy would be binding for

less than 4% of the hard coal capacity. Therefore, we ignore this point in our analysis. On

the other hand, the average emissions from lignite plants per GW installed capacity were 7.5

million tonnes of CO2. As a result, 29% of the lignite capacity would be subject to the climate

levy. Taking into account the average emissions per MWh of generation from lignite plants,

the marginal cost of a�ected lignite plants would increase by 28 Euros/MWh.22 This fee would

apply to 41% of RWE’s lignite capacity.

Themerit order e�ect of the climate levy is indirect through the resulting change in prices. On

the other hand, the security reserve proposal implies a direct change in the merit order. This

policy scenario phases out 2.7 GW lignite capacity andmoves it into a security reserve. In our

analysis, we ignore the latter implication and simply remove this capacity from the supply

schedule.23

1.3.4 Merit order e�ects

Next, we explain howour policy shocks a�ect the estimated supply curve. Figure 1.4 illustrates

the implications of our policy scenarios on the supply curve. In this figure, the capacities

that are a�ected by the policies and the generation capacity by technology are based on our

dataset. On the other hand, we set the cost levels in order to clarify the exposition. However,

the illustration preserves all the qualitative implications of our calculations. The average

residual demand for conventional power capacity in 2015 is indicated with Q. The figure

shows that, hard coal is the marginal technology at the average demand. This is in line with

the higher variability of generation from hard coal plants in Germany. We support this result

with further empirical evidence in Appendix A.2.2.24

The climate levy scenario leads to a drastic change in the merit order curve as illustrated in

the first panel of Figure 1.4. A considerable hard coal capacity replaces the a�ected lignite

capacity, which leads to a higher average cost ofmeeting the average load. The a�ected lignite

22 We obtain emission and generation data for lignite plants from the ISE charts, and calculate average emissions
per MWh of generation.
23 See Table A.2 in Appendix A.2.3 for the list of units to be transferred into the security reserve.
24 Also see the charts presented on the website of ISE for the variability of generation (https://www.energy-c
harts.de/index.htm).
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Figure 1.4 : Merit order e�ects
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Notes: This figure illustrates the e�ects of the proposed policies. A�ected capacities and generation capacities
are based on the 2015 data for Germany. Marginal costs are not based on data, but chosen to clarify the
exposition. The first panel illustrates how the climate levy relocates a significant amount of lignite capacity on
the merit order curve. The second panel illustrates the phase-out plan due to the security reserve proposal.Q
is the average hourly load in 2015.

capacity is now ranked just prior to the gas capacity on the merit order curve. The second

panle illustrates the e�ect of security reserve proposal. It phases out 2.7 GW of lignite capacity.

As a result, the hard coal and gas capacities shi� le� on the supply schedule.

These policy scenarios do not a�ect themarket price at the average load instant. Hence, at the

average load, there is no profit change for the capacity ranges that are una�ected by the policy,

but there is a negative profit e�ect due to the replacement of the a�ected lignite capacity

with hard coal capacity. We present the profit e�ects at each load instant in the following

subsection.
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1.3.5 Profits

We calculate the overall profit e�ects by assuming that the total profit from each technological

capacity is shared among firms based on their technology-specific capacity shares. Figure 1.5

displays the density of hourly load over 2015 and the absolute change in RWE’s profits at each

load value. When we calculate the profits for each value of load, and take weighted average

with respect to its density, we find that the climate levy causes 18% profit loss on average,

and the security reserve scenario results in 5% average loss in profits.

Figure 1.5 depicts the profit e�ects at each level of hourly demand, which can be summarized

in three categories: First, there is no change in the profits at the hours when the marginal

technology is nuclear or una�ected lignite capacity. Second, at the load instants where the

shi� in the supply curve causes a change in the marginal technology, the firmmakes positive

profits from running its infra-marginal units. For example, the nuclear capacity runs with

much higher absolute profits at these hours. There are two occasions of positive profits: one

is where the lignite capacity is replaced by the hard coal capacity, and the other one is where

the hard coal capacity is replaced by either the lignite capacity in the climate levy scenario, or

the gas capacity in the security reserve scenario. The density of such hours is less than half of

that of an hour with the average load. Hence, although the positive profit e�ects are high at

these load instants, their weights are small. Third, the profits are negative for all other values

of load which covers the mass and the right tail of the distribution.

A noteworthy point in Figure 1.5 is related to the hourswhere the hard coal capacity is replaced.

At those hours, there are two countervailing e�ects on the profits. First, the post-policy prices

are higher, leading to positive profits from infra-marginal technologies. Second, the post-

policy marginal cost of the capacity where hard coal replaces lignite is higher, which exerts

a negative pressure on the profits. The net e�ect seems to be positive for both scenarios.

However, it is much smaller for the climate levy scenario. The reason is that the marginal cost

of a�ected lignite capacity is not much higher than the marginal cost of the replaced hard

coal capacity.

1.3.6 Remarks and summary

The security reserveproposal includes a compensation for thea�ected capacity. Theproposed

compensation amounts to 1.61 billion Euros for the five years that this capacity is used as
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Figure 1.5 : Profit e�ects
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Notes: This figure illustrates the density of hourly load over 2015 and the absolute change in hourly profits
at each load value due to climate levy and security reserve scenarios. The residual load is given by total load
minus generated electricity from renewables.

a security reserve just prior to their scheduled decommissioning dates. According to our

calculations, the implied subsidy rate of the compensation is 13.38 Euro/MWh.25 This means

that the policy compensates the decline in profits due to each unit of retired capacity at this

rate. The 13.38 Euro/MWh subsidy for RWE’s retired capacity compensates half of its profit

loss at the average-demand, which can be seen in Figure 1.5. The net e�ect of the security

reserve policy on RWE’s total profits is a slight increase in profits by less than 1%.

To summarize, our theoretical analysis predicts that (i) the climate levy proposal in the first

stage leads to an 18% loss in the RWE’s profits, and (ii) the retirement of lignite plants in the

security reserve scenario results in 5% profit loss, which is fully restored with a compensation.

In the third stage of the proposal, the security reserve scenario faced a legal challenge that

the compensation plan could be against the EU state aid rules. This event increased the

probability of an uncompensated policy, such as the climate levy in the first stage.

25 We assume that the decommissioning dates provided in Table A.2 in Appendix A.2.3 are binding independent
of the policy, and the compensation is paid for the energy that the capacity in the security reserve can produce
for the five years just prior to their scheduled decommissioning dates.
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In our analysis, we assume constant marginal cost per technology, and use the average prices

to approximate themerit order curve. An alternativeway is to allow for non-constantmarginal

costs by fitting technology-specific lines to the market data. We prefer the former method for

three reasons. First, it is much easier to illustrate the e�ect of these policy scenarios on the

supply schedule, which is the main goal of the current section. Second, each capacity unit

of lignite would have di�erent marginal cost under non-constant marginal cost assumption,

whereas we do not have data to identify the lignite units a�ected by the climate levy. This

point is not important under a constant marginal cost assumption. Third, the estimations of a

linear supply curve su�ers from simultaneity. As a result, estimated slopes based onmarket

data can be biased. Proper estimation of the supply curve is beyond the scope of our paper.

With a positively-sloped supply curve, however, the policy shocks lead to an increase in prices

at each point that the supply curve shi�s to le�. An increase in equilibrium prices a�ects

profits positively, in particular for infra-marginal nuclear and lignite capacities. Therefore,

relaxing the constantmarginal cost per technology assumptionmight yield lower profit e�ects

in absolute terms. We illustrate this e�ect in Appendix A.2.4 based on a naive supply curve

estimation.

1.4 Potential reactions and investors’ priors

Wewill draw conclusions about investors’ initial beliefs from their reactions to the di�erent

stages of the policy development. Table 1.2 outlines plausible belief updating scenarios.

Scenario 0 is no reaction: here, investors simply do not care about stranded asset risk and do

not react to any policy proposals or related news. In Scenario 1, the investors’ prior is that

unburnable carbon is of no concern. However, they do care about stranded asset risk induced

by specific policies, and react to such news. They are positively surprised by the compensation

mechanism and negatively by its challenge. In Scenario 2, investors have already priced in

stranded asset risk due to unburnable carbon: for example, they are aware of a nationwide

or worldwide emission reduction target and have already considered this overall target in

their firm valuation. Therefore, a policy introduced to achieve the target does not impact their

valuation of the a�ected firms. However, the compensation mechanism is unexpected for

these investors and they value it positively.26 When the compensation is challenged, they

26 Note that in this case, we would not expect a positive reaction for E.ON: only RWE receives compensation
payments, and investors are not concerned about introduction of the uncompensated policy in this scenario, as
they have already priced in general unburnable carbon risk.
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Table 1.2 : Scenarios for investors’ priors and reactions

Scenarios
Reactions to...

Uncompensated
policy

Compensated
policy

Challenge to
compensation

0 Don’t care 0 0 0

1 Have not priced in stranded asset risk
before, but react to policies

− + −

2 Have priced in expected loss, but are
surprised by compensation

0 + −

3 Have priced in expected loss and
compensation

0 0 −

adjust their valuation downward again. Finally, in Scenario 3, investors do care about stranded

asset risk, but they expect firms to be compensated. When the Ministry announces the un-

compensated policy, they already expected a policy move and they still expect a subsequent

compensation to follow. Therefore, they do not believe that the announcement will a�ect the

firms economically, and show no reaction. The compensation plans are not surprising, either,

and investors do not adjust their firm valuation. However, the challenge of the compensation

is a surprise, and causes investors to adjust firms’ values downward.

Table 1.2 lists the scenarios that we find likely and logically consistent. It is not a complete

list of potential reactions and potential interpretations for each event. Note that, absence

of surprise is already one part of the story in some of our scenarios. We provide a detailed

analysis related to the surprise content of the events in Section 1.6 a�er presenting our results.

1.5 Empirical methods

We conduct a short-run event study analysis wherewe investigatewhether there are abnormal

returns associatedwith theevents. Consider the following specification toestimate thenormal

market performance of a single asset: rt = Xtβ+εt, where rt is the continuously compounded

return of the asset at the trading date t, which is the daily change in the logarithm of asset

prices. The normal performance of the asset is predicted by the vector of covariatesXt. The

coe�icient vector (β) and the error term (εt) are asset specific. We assume that the errors are

independent drawings from a normal distributionwithmean zero and constant variance, such

that εt ∼ NID(0, σ2). We provide extensive specification tests and robustness checks on the

NID assumption.
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Event study approach is based on comparing realized returns on the event date with normal

returns. The normal return, which is an estimate of E[rt|Xt], is the predicted return given

by r̂t = Xtβ̂. We define the relative time index τ = t − T to measure the distance to

the event date T in terms of trading days. Then, the abnormal returns (AR) are given by

γT+τ = rT+τ − E[rT+τ |XT+τ ], and their estimates are the prediction errors, given by γ̂T+τ =

rT+τ − r̂T+τ .

The null hypothesis that the event does not have an e�ect over the eventwindow is formulated

asH0:
∑τ=h

τ=−h γT+τ = 0, where h is the half-width of the event window. Hence, the event

window spans the L = 2h+ 1 trading days from t = T − h to t = T + h. The sum over the

abnormal returns gives the cumulative abnormal return (CAR).

In order to apply the classical t-test, the variance of the CAR can be calculated as var(CAR) =

ι′V ι, where V is the L× L covariance matrix of abnormal returns and ι is an L× 1 vector of

ones. The variance of prediction errors has two components: sampling uncertainity in the

estimation of the model parameters and the error uncertainty. If the estimation sample is

su�iciently large, one can ignore the samplinguncertainty. Although the samplinguncertainity

in our application is small and does not a�ect any of our results, we do not ignore it. Sampling

uncertainty causes serial correlation among abnormal returns. Hence, V has non-zero o�-

diagonal elements. Its influence is typically very small in short-run event studies, which is

the case in our application too. In all our estimations, taking the correlation structure into

account does not lead to any visible di�erences. When the o�-diagonal elements are taken as

zero, var(CAR) =
∑τ=h

τ=−h var(γT+τ ), where var(γT+τ ) is given by var(r̂T+τ ) + σ2. The first

term is due to sampling uncertainity, and the second term is the error variance.

To interpret the AR as the event e�ect, the required assumption is that the model is correctly

specified such that the predicted returns for the event window are the counterfactual returns

to the asset in the absence of the event. The choice of the covariate set is generally motivated

by well-known statistical and theoretical models of asset returns. We provide an extensive

robustness analysis with respect to this choice. In our baseline estimations, we simply use a

constant and returns to a market performance index (the so-called market model), which is

generally considered su�icient for short-run event studies (Campbell et al. 1997).

Valid estimation requires that the normal market performance is uncorrelated with the event-

induced abnormal returns. To control for potential feedback from the event to the normal
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market performance, the common approach is to exclude the event window observations in

the estimation of expected returns. Given that abnormal returns are simply the prediction

errors, the natural choice for the estimation window is to use the observations prior to the

event window, potentially leaving a gap between the end of the estimation sample and the

beginning of the event window, which we call the “pseudo window”. In the absence of any

other event, the pseudo-window abnormal returns are expected to be insignificant. We

conduct performance tests for the predictive power of our model by calculatingL-days CARs

for each date in the pseudo window as if an event has occurred on that date.

Themost important threat to identification of the event e�ect is the presence of other contem-

poraneous shocks in the event window. There are several ways to control for such potential

biases. First, when there is a limited number of assets or announcements, it is feasible to

review the news around the event dates. We undertake this approach by using a news search

engine and we identify a small number of such potential confounding events, which will be

discussed in Section 1.7.2. Second, the event window should be kept reasonably small to

rule out other asset-specific events around the event window. Third, the market model can

capture the average e�ect of market-wide shocks via themarket price index. However, the

market price index is not a proper counterfactual control unit because the event-a�ected units

might participate in this portfolio, leaving the price index endogenous to the event shock. Also,

the weights of the market index are not intended to produce a control unit for the a�ected

company, but to reflect the average market conditions. In order to take care of this concern,

we apply a synthetic control approachwhich allows choosing assets to create a counterfactual

portfolio and estimating their weights.27 We provide a detailed description of this approach in

Appendix A.4.

To control for industry-wide shocks, we use EnBW as the control unit, a company in the same

industry but without any relevant lignite asset. Therefore, a priori, we do not expect the

series of events subject to our analysis to have any e�ect on EnBW. This gives a di�erence-in-

di�erences estimate of the abnormal returns by removing biases from industry-wide shocks

to returns to asset i.28 We provide a technical description of this approach in Appendix A.4.

27 See Abadie and Gardeazabal (2003) for the synthetic control estimation. See, for example, Guidolin and
La Ferrara (2007) for an application of synthetic control estimation in an event study analysis. An alternative
approach might be to use a di�erent market index. This approach is less preferable, since our goal is to capture
the common shocks in the market that are most relevant for the subject firms.
28 In terms of the synthetic control approach, this can be considered as assigning a weight of 1 to EnBW and 0 to
all other assets in the donor pool.
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When there are more than one announcement, testingH0 amounts to testing the significance

of average cumulative abnormal returns (ACAR) over the announcements. Index di�erent

announcements with j = 1, .., J , and denote the corresponding announcement date with

Tj . Therefore, τ = 0 at t = Tj for all j. In these estimations, we use announcement specific

estimation windows located at a common distance to the announcement dates. The average

abnormal return (AAR) at distance τ is given by (1/J)
∑J

j=1 γj,Tj+τ , and its variance is given by

(1/J2)
∑J

j=1 V ar(γj,T+τ ). The ACARand its variance canbe calculated as describedpreviously

by using the AARs and their variances (Campbell et al. 1997).

1.6 Baseline results

Weemploy data on three publicly listedGerman energy utilities, namely E.ON, RWE, and EnBW.

Their stock prices and all other data are from Thomson Reuters Datastream, unless otherwise

noted. To calculate market returns, we use the DAX, a performance index consisting of the

30 major German companies trading on the Frankfurt stock exchange. In the estimations

presented in themain text, the covariate set includes a constant and themarket return, which

is generally considered to be su�icient for short-run event studies (Campbell et al. 1997). In the

Appendix, we provide robustness tests by also using retuns to oil prices and a risk free rate fo

return. These additional covariates do not have any predictive power in our estimations, and

hence, their inclusion does not have any e�ect on the results. We provide a comprehensive

description of our dataset and various descriptive statistics in Appendix A.3. Throughout the

paper, the details of a specification, such as windowwidths, are listed in the table and figure

notes.

Table 1.3 : ACARs by the stages of the proposal

Companies Events
Climate levy proposal Security reserve proposal State aid assessment

RWE 0.012 -0.007 -0.102∗∗∗

(0.020) (0.016) (0.019)
E.ON 0.011 -0.019 -0.072∗∗∗

(0.017) (0.014) (0.013)

Notes: This table presents the average cumulative abnormal returns of RWE and E.ON from the announce-
mentsof each stageof thepolicyproposal. Theeventwindow is the5days centeredaroundanannouncement.
The estimation window is the 90 days just prior to the event window. Hence, the event window observa-
tions are excluded in the estimation of normal market performance. Standard errors are in parentheses.
Significance levels are indicated as ∗ p < 0.10,∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Westart bypresenting theaveragee�ectof announcements for each stageof theproposal. This

strategy applies a strict punishment for the presence of irrelevant announcements. Therefore,

rejecting the null requires a strong reaction in the relevant announcements. The results are

presented in Table 1.3, where each entry refers to the ACAR. For both RWE and E.ON, only the

e�ects of the “challenge to the compensation” stage are significant. That is, investors did not

react to the initial climate levy proposal, which was directed at stranding lignite assets by

charging an extra fee on carbon emissions, and to the following announcements related to the

compensation mechanism, that is, paying plant owners for not operating their units. Only the

news that the compensation mechanismmight not go through due to violating state aid rules

seems to have triggered a significant and negative reaction. These results are consistent with

Scenario 3 only. That is, investors do price in the stranded asset risk, but with an expectation

of a compensation policy.29

Inference based on the average CARs reduces the possibility of incorrect rejection of a true

null hypothesis (type I error). However, it increases the possibility of failing to reject a false

null hypothesis (type II error), which might be responsible for the insignificant results for the

first two stages of the policy development. In Table A.10 in the Appendix, we provide detailed

results based on the CARs for each individual announcement in the first two stages. We show

that all the announcements in these stages are still insignificant. Therefore, we conclude that

there is no reaction in these two stages. Here, we proceed by investigating the significant

e�ect in Stage 3 in detail.

Table 1.4 : CARs by the Announcements for the State aid Assessments

Companies Announcements
(3a) (3b) (3c)

RWE -0.020 -0.135∗∗∗ -0.150∗∗∗

(0.031) (0.028) (0.038)
E.ON 0.004 -0.000 -0.220∗∗∗

( 0.024) (0.021) (0.024)

Notes: This table presents the cumulative abnormal returns of RWE and E.ON fromeach announcement in the
third stage of the policy proposal. The event window is the five days centered around an announcement. The
estimation window is the 90 days just prior to the event window. Hence, the event window observations are
excluded in the estimation of normal market performance. Standard errors are in parentheses. Significance
levels are indicated as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

29 EnBW does not own lignite assets. Our results are in line with this fact. We present the corresponding results
for EnBW in the following sections, where we use this company as a control unit.
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In Table 1.4, we present the test results based on individual CARs due to the announcements

in Stage 3. The results indicate that the ACARs in stage 3, presented in Table 1.3, are mainly

driven by the CARs during announcements (3b) and (3c): when themedia reported on the state

aid assessment by Parliament’s academic service, and when the EU Commission announced

opening the state aid procedure, respectively. Event (3a), the date at which the academic

service presented its report to Parliament, seems to have no significant e�ect on either firm.

The insignificant CAR due to this event is in line with our conjecture that this document was

not publicly available on that date. Only on the publication dates of the media reports of the

assessment do we observe a significant reaction.30 This pattern is in line with the assumption

that investors do not have access to insider information and price in only new information

made public via media reports.

The estimated average e�ect of the announcements related to state aid assessments on RWE

is larger, as also illustrated previously in Table 1.3. This result is in line with the fact that RWE

is more lignite-intensive (see Section 2). However, in the next section, we show that the ARs of

RWE due to event (3b) is partially driven by a strong negative earnings surprise, while E.ON is

experiencing a small positive earnings surprise. As a result, the di�erence in the reactions is

smaller. Overall, we do not find a significant di�erence between the reactions across these

two firms.

The results presented above show that investors do care about stranded asset risk, but that

they also expect a compensation policy for their economic losses. More specifically, investors

in stock markets did not react to the announcement of the climate levy proposal, as they

expect that the firms involved would not be financially a�ected. The underlying reason is that,

as their reactions to stages 2 and3 reveals, they expected that the firmswouldbe compensated

for their losses.

It is important that such an interpretation would not be possible by interpreting the reactions

to individual events independently, as investors’ reactions to policy signals depend on their

prior expectations. This is the idea underlying our strategy of tracking investors’ reactions in

the course of the development of a policy proposal. The significant reaction in Stage 3 shows

that there is a surprise element in the third stage. In the absence of confounding events, we

can conclude that this surprise was due to the challenge to the compensation policy. In the

next section, we show that the results from the third stage are not driven by confounding

30 The first report on the assessment was published by Der Spiegel (event 3b).
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events. Furthermore, this finding explains the underlying reason for our second stage result.

Simply, the investors did expect a compensation, and the introduction of a compensation

scheme in Stage 2 did not surprise the investors. The result that the investors expect and do

care about a compensation scheme explains the absence of reaction to the initial proposal of

uncompensated asset stranding in Stage 1. That is, given the findings from Stage 2 and 3, the

absence of reaction in the first stage cannot be due to that the investors do not care about a

stranded asset risk. In the following, we also provide strong empirical evidence that the initial

announcement of the proposal surprised the investors, which also shows that we correctly

identified the initial announcement date when new information was released.

To establish surprise for the initial announcement of the proposal, we employ data on future

contracts traded at the European Energy Exchange (EEX). Specifically, we use EEX futures

data for the German power market. The initial proposal implied the stranding of lignite-

related assets andmeant that significant baseload capacity would not be available a�er 2016.

Therefore, it had the potential to a�ect activities on the German power futures market. The

a�ected electricity companies themselves would have needed to buy back their positions

for the respective delivery period, as they would not have the required capacity any more.

Moreover, it is possible that the proposal introduced a general uncertainty among market

participants, causing an increased demand for hedging. Both mechanisms would result in

increased trading activity – if the proposal came as a surprise to market participants.

Figure 1.6 illustrates the trading volume, the number of trades, and the number of traded

contracts around the first announcement of the climate levy proposal. In all sub-figures, we

can clearly see an extraordinary increase in market activity starting on the announcement

date which persists for a few days. This means that the initial proposal surprised market

participants, and they reacted to the implied capacity reduction. However, the stock market

did not react to the implied asset stranding (see Table A.10 in the Appendix for their reaction

to the first announcement). Given our sequential event study results, the natural explanation

for this pattern of reactions is that stockmarket investors believed that the capacity reduction

would not mean a financial loss for the a�ected firms because they expected a compensation.

As a result, the two patterns we observe – the simultaneous, di�erent reactions in the stock

and futures markets to the first stage, and the pattern of reactions in the stock market – allow

us to conclude that the initial climate levy proposal came as a surprise, but did not change the
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Figure 1.6 : Power-futures market around the announcement of climate levy
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Notes: This figure illustrates the trading volume, the number of traded contracts, and the number of trades
for future contracts traded at the EEX around the first announcement of the policy proposal indicated by date
0. The dashed line is the trend estimated by using the non-event days outside the vertical dashed lines. The
shaded regions indicate 90% and 95% confidence intervals based on the forecasts from the estimated trend.
The results are robust to various configurations of the estimation sample to estimate the trend.

stock market investors’ valuation of the firms as they expect compensation.31 The significant

stock market reaction in stage 3 provides evidence that stock market investors do care about

stranded asset risk, and that their insignificant reactions to the first and second stages results

from having priced in a compensation policy rather than from ignoring the stranded asset

risk. These results are in line with the narrative evidence presented in Section 1.2.

31 We conducted the same analysis for the other announcements. There is a similar, but weaker evidence for an
increase in power market activity during the second announcement of the first stage, which implies a delayed
reaction to the initial announcement of the proposal. In all the other announcements, there is no extraordinary
activity. That is, the power markets did not react to the announcements about the compensation plans (Stage 2
and 3), which is in line with basic intuition.
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1.7 Robustness analysis

We present the results from alternative modeling choices in the Appendix. First, in Appendix

A.5, we show that our results are robust to using a three-day event window, and employing oil

prices and interest rates in the predictionmodel.32 Second, we provide extensive specification

tests and robustness checks on the assumed error distribution by using both resampling and

analytical techniques. These results are presented in Appendix A.6. In the rest of the paper, we

present robustness tests on two other dimensions. In Section 1.7.1, we focus on analyzing our

model’s performance in identifying the event e�ect. In Section 1.7.2, we investigate whether

there are confounding events around the announcement dates that might drive our baseline

results.

1.7.1 Placebo tests andmodel specification

We start by conducting placebo tests by assuming false event windows just prior to our events.

This analysis validates our model’s performance in predicting the counterfactual returns.

Second, we conduct synthetic control estimations to verify that our results are not driven by

the endogeneity issue due to the presence of E.ON’s and RWE’s assets in the DAX30 index.

The results from the placebo tests are presented in Figure 1.7. On each graph, the le� panel

separated by the dashed line is the pseudo-event window, and the right panel is the event

window. Each point on a graph refers to the CAR calculated from the abnormal returns on

the five days centered around that date.33 The estimated CARs for date zero (the event date)

correspond to the results presented in Table 1.4. The 90% and 95% confidence intervals for

the CARs are illustrated as forecast intervals to ease the readability.

Figure 1.7 shows that the model performs well in predicting the out-of-sample returns in

the pseudo window, thus increasing confidence in our model specification. Furthermore,

there seems to be no sign of other events in the pseudo windows that bias the estimated CAR

around the event day. For the significant events, theCARs are generally stable and insignificant

throughout the pseudo window and gradually become negative and significant in the event

windows. The gradual change in the CARs and the presence of significant CARs just before

the event window is not surprising as we use five-day rolling windows. For example, the

32 We have verified that our results are robust to using 45, 60, and 120 observations for the estimation sample.
33 Corresponding estimated abnormal returns are provided in Figure A.13 in the Appendix.
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Figure 1.7 : Impact of state aid assessments
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Notes: This figure presents the CARs of E.ON and RWE from each announcement in the third stage of the
policy proposal. The event window is the five days centered around an announcement (date 0) indicated with
the dashed lines. In the figure, the days prior to the event window are the lacebo announcement days. The
estimationwindow is the 90days just prior to the pseudowindow. Hence, the eventwindowandpseudowindow
observations are excluded in the estimation of normal market performance. The 90% and 95% confidence
intervals are indicated by shaded areas.

calculation of the five-day rolling CAR on date 3, which is in the pseudo window, employs

two abnormal returns from the event window. The observed pattern indicates that the event

e�ects seem to be well captured by the five-day event window.

To control for potential biases due to the endogeneity of the DAX30 index, we perform syn-

thetic control estimations. Here, we estimate a synthetic portfolio using DAX30 companies by

excluding RWE and E.ON. We base the matching procedure only on the asset returns of these

companies. The technical details are provided in Appendix A.4.1. The results are presented in
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Figure 1.8 : Synthetic control estimations
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Notes: This figure presents the synthetic control estimations of the CARs of E.ON and RWE from each an-
nouncement in the third stage of the policy proposal. The event window is the five days centered around an
announcement (date 0) indicated with the dashed lines. The days prior to the event window are the placebo
announcement days. The estimation window is the 90 days just prior to the pseudo window. Hence, the event
window and pseudo window observations are excluded in the estimation of normal market performance. The
in-place placebo tests are illustrated with grey lines, and the grey areas are 90% and 95% confidence intervals
constructed from the pre-treatment RMSE.

Figure 1.8.34 While the qualitative results remain the same, the estimated sizes of the CARs

are slightly larger. This indicates that the market price index might have been a�ected by the

events subject to our analysis and therefore absorbed some of the event e�ects. However,

the size of this bias is very small and negligible for all the events.

Figure 1.8 further illustrates some inputs to conduct the non-parametric inference strategy

suggested by Abadie et al. (2015) for synthetic control estimations. The so-called “in-place

placebo” estimations, which are estimations of the event e�ect on the units in the control
34 See Figure A.15 in the Appendix for the corresponding abnormal returns.

29



1 Climate Policy, Stranded Assets, and Investors’ Expectations

group (donor pool), are illustrated with grey lines. The shaded areas are 90% and 95% predic-

tion intervals constructed from the pre-treatment root mean squared error (RMSE). It is seen

that the predicted CARs of untreated units are generally within the prediction intervals which

confirms the predictive power of the model.35 Second, the CARs for E.ON and RWE during

the event window are extraordinarily higher than the CARs of untreated units. These results

are in line with our baseline estimations. We present the non-parametric p-values based on

the in-place placebo tests in Table A.14 in the Appendix, which are in line with our baseline

estimations.

1.7.2 Confounding events

In this section, we control for the presence of confounding events around the announcement

dates that might partially or completely drive our baseline results. To detect confounding

events, we used a news search engine and conducted a careful review of the news published

around the announcement dates of events (3b) and (3c). The search methodology and a

summary of all the results are provided in Appendix A.7. Our search resulted in two news

items.

The first item is the nuclear provisioning assessment announcement and is potentially relevant

for both RWE and E.ON. On September 10, the first trading date in the event window of

announcement (3c), the media reported the results of a study commissioned by the Ministry

of Economy and Energy.36 This study concluded that the energy companies’ provisioning

for liabilities in connection with nuclear plant decommissioning and waste disposal was

insu�icient. Although this study did not imply direct political or financial consequences, one

could imagine that investors reacted to it.

The second item is earnings announcements. Both E.ON and RWE published their quarterly

earnings announcements just before announcement (3b) – on August 12 and August 13,

respectively. Since the announced earnings are company specific, this event has the potential

to induce the patterns in the estimated CARs for announcement (3b).

35 The reason underlying the higher dispersion in the in-place placebo CARs around event (3b) will be clarified in
the next subsection.
36 See http://www.spiegel.de/wirtschaft/unternehmen/atomausstieg-fuer-den-atommuell-fehl
en-30-milliarden-euro-a-1052869.html. For an English-language account of the study and its potential
implications for the firms’ credit ratings, see https://www.moodys.com/research/Moodys-Nuclear-shutd
own-costs-stress-German-power-generators--PR_335268.
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Controlling for the nuclear provisioning assessment In order to control for the nuclear

provisioning assessment, we use EnBW, a company from the same industry but without rele-

vant lignite assets, as the single control unit. This strategy leads to a di�erence-in-di�erences

estimation of abnormal returns by removing the e�ects of common industry-wide shocks (see

Appendix A.4.2 for technical details). The nuclear provisioning assessment can be classified

as an industry-wide shock. First, the assessment does not target a specific company, but all

companies with nuclear power plants. Second, the problem of nuclear waste is relevant not

only for RWE and E.ON, but also for EnBW, which has substantial shares of nuclear energy

in its generation portfolio.37 On the other hand, the lignite policy proposal is irrelevant for

EnBW, since it does not hold any asset targeted by the proposal. Therefore, if the nuclear

provisioning assessment had any e�ect, it should be reflected in EnBW’s asset returns. By

using EnBW as a control unit, we can eliminate the influence of common systematic shocks in

a general manner.

Figure 1.9 : Pseudo tests on EnBW
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Notes: This figure presents the CARs of EnBW from each announcement in the third stage of the policy proposal.
The event window is the five days centered around an announcement (date 0) indicated with the dashed lines.
The days prior to the event window are the placebo announcement days. The estimation window is the 90 days
just prior to the pseudo window. Hence, the event window and pseudo window observations are excluded in
the estimation of normal market performance. The 90% and 95% confidence intervals are indicated by shaded
areas.

This approach requires that (i) the events subject to our analysis had no impact on EnBW’s

asset returns, and (ii) any systematic di�erence between the a�ected units and EnBW can be

captured by the set of control variables. To assess the validity of EnBW as a control unit, we

37 According to the firms’ annual reports, 23% of EnBW’s installed capacity in 2015 was nuclear power plants,
compared to 15% for RWE and 28% for E.ON.
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investigate the model’s performance in predicting EnBW asset returns and check whether

there are significant abnormal returns in the event windows. Figure 1.9 presents the results.

The CARs stay within the 95% percent confidence intervals both in the pseudo and event

windows.38 This confirms themodel’s out-of-sampleperformance inpredictingEnBW’s returns.

Furthermore, these results are generally in line with the assumption that EnBW was not

a�ected by the policy proposals, and reveal that our baseline estimations are not driven by

industry-wide shocks such as the nuclear provisioning assessment. If this event had an e�ect,

we would expect to see some reaction in the asset returns of EnBW.

Figure 1.10 : CARs by using EnBW as a control unit
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Notes: This figure presents the CARs of E.ON and RWE from each announcement in the third stage of the
policy proposal by using EnBW as the control unit. The event window is the five days centered around an
announcement (date 0) indicated with the dashed lines. In the figure, the days prior to the event window are
the placebo announcement days. The event window and pseudo window observations are excluded in the
estimation of normal market performance. The estimation window is the 90 days just prior to the pseudo
window. The 90% and 95% confidence intervals are indicated by shaded areas.

38 Corresponding estimated abnormal returns are provided in Figure A.13 in the Appendix. See Table A.10 in the
Appendix for the CARs for each individual announcement.
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The estimation results from using EnBW as the control unit are presented in Figure 1.10.39

Despite being slightly less precise, these estimations are generally in line with their baseline

counterparts in Figure 1.7. The size of the estimated CARs for the event windows is close to

those in our baseline estimations, indicating that our results are not driven by some industry-

level confounding event such as the report on nuclear waste liabilities (see Table A.16 in the

Appendix for details).

Controlling for earnings announcements The second news item in our search for con-

founding events is an earnings announcement (EA) just before announcement (3b). The

surprise content of announced earnings are company specific. Therefore, their influence on

the estimation results cannot be eliminated by using a control unit. Our strategy to control

for the earnings announcement is to correct the CARs on the date of announcement (3b) for

predicted abnormal returns due to the earnings surprise.

We proxy the expected earnings with the quarterly earnings forecasts reported by the In-

stitutional Brokers Estimate System (I/B/E/S), which is the mean of earnings forecasts by

many analysts for a large number of firms. Our measure of surprise is the di�erence between

announced earnings (AE) andmean forecasted earnings (MFE) normalized by the standard

deviation of the forecasts, namely, standardized unexpected earnings (SUE) provided by the

Thomson Reuters Database.

The technical details of estimating the marginal e�ect of SUE are provided in Appendix A.4.3.

We provide all the details from each step of these estimations in Appendix A.8. To summarize,

we start by estimating the five-day CARs for all the earnings announcements in our sample by

excluding the two earnings announcements by E.ON and RWE just before event (3b). Next, we

estimate the marginal e�ect of SUE on the predicted CARs. Finally, we extrapolate this result

to the excluded earnings announcements of RWE and E.ON around event (3b). Finally, we

adjust the CARs due to event (3b) with the predicted e�ect of the earnings announcements.

We repeat pseudo tests on event (3b) (see Figure 1.7) by taking the predicted e�ect of the

earnings announcement into account. The results are presented in Figure 1.11, where both

the rolling CARs and the prediction intervals are corrected for the size of and uncertainty

39 Other related results are presented in the Appendix: see Figure A.16 for the corresponding abnormal returns.
The estimation tables by events and by announcements are provided in Tables A.15 and A.16, respectively.
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Figure 1.11 : CARs for announcement (3b) corrected for earnings surprise
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Notes: This figure presents the CARs of E.ON and RWE from announcement (3b) corrected for the e�ect of
earnings announcements. The event window is the five days centered around an announcement (date 0),
indicated by the dashed lines. The days prior to the event window are the placebo announcement days. The
event window and pseudo window observations are excluded in the estimation of normal market performance.
The estimation window is the 90 days just prior to the pseudo window. The 90% and 95% confidence intervals
are indicated by shaded areas.

due to the predicted e�ect of earnings announcements.40 With a conservative approach, we

apply the correction for all the dates presented in the figure. In Appendix A.8, we provide

the corresponding figures illustrating each source of uncertainity separately, and where we

assume a five days event window around the date of earnings announcements. In terms of

the relative distance to event (3b), the earnings announcement of RWE took place on date

-1, while it is date -2 for E.ON. Figure 1.11 shows that the correction does not have an e�ect

on the results for E.ON. However, the results for RWE changes. The corrected CAR is much

smaller compared to the baseline estimate. The corrected e�ect of event (3b) is still significant

against the 95% confidence intervals.41 These results suggest that the reaction to the state aid

assessments is mainly due to announcement (3c).

1.8 Discussion

Given our results in the previous section, our most conservative point estimate for the 5-days

CARs implies a decrease in the market valuation of firms over 20%, which corresponds to a

40 The corresponding corrected ARs are presented in Figure A.17 in the Appendix. See Appendix A.8 for the
calculations for the confidence interval.
41 This is not the case with 99% confidence intervals.
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4% average abnormal return over the 5 days around the event. Given RWE’s considerable

market value (see Table A.3 in Appendix A.3), themonetary impact amounts to around 2 billion

Euros. These results show that the investors expect substantial costs from an uncompensated

policy, such as the climate levy scenario which becamemore likely a�er the compensation

for the security-reserve plan faced a legal challenge. This result is in line with our theoretical

predictions for RWE in Section 1.3, that the profit e�ect of the climate levy scenario can be as

high as 18%.

Note that our theoretical predictions are likely to be upper bounds, as allowing for non-

constant marginal costs generally reduces the negative profit e�ects. Therefore, our empirical

results imply a slightly highermarket reaction compared to the rangeof theoretical predictions

on the rate of change in RWE’s profits. The market value of a firm can be seen as a measure of

the capitalized risk-adjusted present value of future profit flows. Therefore, the di�erences

can be due to the uncertainty introduced by these announcements. Note that confirming

this di�erence statistically is not possible due to the level of uncertainty surrounding these

predictions.

1.9 Conclusion

We analyze the stock market e�ects of a German climate policy proposal aimed at stranding

fossil assets. We exploit the fact that the proposal underwent three stages. It started as a

“climate levy” increasing the CO2 price for power plants older than 20 years and was subse-

quently turned into a compensation mechanism paying individual lignite-fired power plants

for phasing out. In the third stage, the adoption of the compensation scheme was challenged

based on the possibility that it may violate EU state aid rules. We test the e�ects of news

about the di�erent stages of the policy proposal on the German utility companies. We find no

significant reactions to the first and second stages, but a significant and negative reaction to

the third stage for RWE and E.ON.

Our results suggest that compensation mechanisms are expected and thus priced in the

valuation of firms ex-ante. This finding implies that investors do care about stranded asset

risk, but because of the expectation of compensation, they do not believe that they will be

financially a�ected – neither by general unburnable carbon risk nor due to specific policy

proposals implying the stranding of assets. Only the challenge to the compensation changes
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their beliefs. Our results imply that the e�ect of suchpolicy announcements canbe substantial.

Our most conservative estimates for 5-days CARs imply a loss over 20%.

Stranded asset risk is relevant for the energy sector and beyond. Most fossil energy assets are

long-lived; they usually require a large initial investment, but have relatively low operating

costs. S. J. Davis and Socolow (2014) show that expected future cumulative emissions from

the existing infrastructure of the global power sector have increased dramatically in the

last decades. Such long-term investments have the potential to “lock in” carbon-intensive

technologies for a long period of time (Erickson et al. 2015).42 Calculations by IEA (2013) and

Pfei�er et al. (2016) conclude that the “2 degree capital stock” will already be reached in 2017.

Investments in fossil capacities a�er 2017 are ine�icient: they lead to “both larger carbon lock-

ins and higher short-term emissions that need to be compensated by deeper emissions cuts

in the long run” (IPCC 2014a), increasing the cost of climate changemitigation. Moreover, in

order to achieve emission cuts in such a scenario, fossil assets need to be stranded. IEA (2013)

provides a conservative estimate that the energy industry faces sunk costs of $ 120 billion due

to fossil fuel plants being retired early, even if action to achieve the 2◦Cgoal had started in 2012.

For a scenario of delaying climate action until 2030 (and using a di�erentmethodology), IRENA

(2017a) estimates stranded assets of $ 1.9 trillion in electricity generation, and an additional

$ 7 trillion in upstream energy infrastructure (mostly oil production). This is approximately

equivalent to 3.5% of global income, and implies a risk not just for the obviously a�ected

energy industry facing sunk costs: international organizations, financial institutions and

regulators are increasingly concerned about the “transition risk” of climate policy, especially

about a sudden re-pricing of assets.43

A sudden devaluation of energy companies will occur only if expectations were not adjusted

in accordance with the risk of asset stranding. Sudden changes in the stringency of carbon

policies, or expectations in the presence of tipping points can lead to abrupt repricing of fossil

fuel assets. Given energy companies’ size and interrelation with the rest of the economy,

policymakers may regard energy companies as “too big to fail.” For this and other political

economy reasons,44 policymakers may opt for compensation policies, and investors may

42 Also see Unruh and Carrillo-Hermosilla (2006), Seto et al. (2016), and Unruh (2000, 2002).
43 Cf., e.g., European Systemic Risk Board (2016a), Caldecott et al. (2016), IRENA (2017b), Batten et al. (2016),
Banque de France (2015), and Baron and Fischer (2015). Also, see Johnson et al. (2015), Rozenberg et al. (2015),
and Iyer et al. (2015) for the estimates of long-term energy- and economic-costs of the 2◦C goal.
44 See Jenkins (2014), Manley et al. (2016), Healy and Barry (2017), and Caldecott et al. (2017) for an overview of
political economy constraints on climate policy.
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expect them to do so. Compensations, then, are almost a self-fulfilling prophecy: if they are

expected, they will be necessary in order to avoid larger shocks.45 Therefore, understanding

the interaction between policy making and investors’ expectations is essential for the design

of climate policies. Our results suggest that early and credible commitment to climate policies

and whether they involve compensation payments or not is crucial. Such clear signals to

financial markets can avoid a disruptive and unorderly energy transition andmacro shocks,

while directing capital towards climate-friendly technologies. We believe that further research

in similar contexts can help to generalize these results, or to identify the important factors in

the formation of expectations regarding climate related risks.

45 Batten et al. (2016) use a similar argument referring to the potential time inconsistency of government policies
in the context of stranded assets. They do not consider compensations, however, but only distinguish between a
“low carbon equilibrium” and a “high carbon equilibrium.”
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2 Institutional Investors, Climate Policy Risk, and
Directed Innovation

2.1 Introduction

The tightening of climate policies may cause technologies related to fossil fuel use to lose

value compared to “green” technologies. (Future) climate policy then entails a “technological

risk” for firms whose business model relies on fossil-based knowledge. This risk translates

into a risk for investors. According to a recent survey, 75% of institutional investors – i.e.

organizations that invest on behalf of their members or clients – consider technological risk

to be a financial risk already today or within the next five years (Krueger et al. 2020). With

large and increasing shares of worldwide equity under management, institutional investors

will have an important role to play in the transition to a green economy. Due to their size,

they can use voting power and direct conversations with management to a�ect firm-level

outcomes. Building on evidence that institutional investors have an impact on firm-level

innovation (Aghion et al. 2013) as well as environmental, social and governance (ESG) scores

(Dyck et al. 2019; Dimson et al. 2015) and CO2 emissions (Azar et al. 2020), this paper aims to

find outwhether institutional investorsmitigate technological risk by influencing the direction

of innovation in firms.

Institutional investors are playing an increasingly large role in financial markets, holding on

average 40% of the equity of the firms in this paper’s sample. More importantly still, a large

number of institutional investors have voiced concern about climate risk. Typically, climate

risk is understood as an aggregate of two types of risk: physical risk from climate change itself

(see, e.g., Dietz et al. 2016), and transition risk (sometimes also called regulatory risk) due to

stricter climate policies a�ecting asset values (McGlade and Ekins 2015; Battiston et al. 2017;

Batten et al. 2016). Institutional investors are reported to be particularly concerned about

transition risk, andmany institutional investors have signed initiatives such as the “United

Nations Principles for Responsible Investment” (UN PRI) or “Climate Action 100+”, committing

to (climate) responsible investment. This paper focuses on a particular case of transition

risk: the risk that technologies related to fossil fuel use lose value due to climate policies. Car
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manufacturers, for instance, will meet climate policy goals less by reducing own emissions,

but by changing the type of technology they sell.

The financial sector has traditionally not been equipped for dealing with uncertainties due to

climate change or climate policy: models for risk management in portfolios are based on past,

quantifiable risks and are not designed to reflect future uncertainties (Battiston et al. 2019;

Silver 2016).1 Usingdata for 2015, Battiston et al. (2017) have shownhow institutional investors

are still exposed to firms and sectors which face a high transition risk. They also demonstrate

how the financial system, due to second-round e�ects from indirect holdings adding to the

first-round e�ects, would get under stress in case of a strict climate policy scenario. This

appears to reflect a very limited success of initiatives for sustainable investment.

However, institutional investors can choose di�erent strategies to act (climate) responsibly, of

which portfolio adjustment plays a minor role. In a survey among international institutional

investors on climate risk, 84% of respondents reported that they had taken climate-related

engagement actions in the last five years – compared to 29% attempting to reduce carbon

footprints through portfolio shi�s (Krueger et al. 2020). Engagement can take various forms:

the most visible channel is proxy voting in shareholder meetings. Analysts have noted that

institutional investors are increasingly voting in favor of climate-related shareholder propos-

als, although there is quite some heterogeneity between them (Berridge and Nurjadin 2020).

However, less visible channels also play a role: engagement can take place “via letters, emails,

telephone conversations, and direct conversations with senior management” (Dimson et al.

2015). The actual influence of institutional investors can work via di�erent mechanisms. They

can use public pressure, threaten to divest, vote against proposals in shareholder meetings,

or vote against re-election of managers. In a more positive sense, they can also back man-

agers who initiate changes which only pay back later. With success measured by changes

implemented a�er the engagement activities, such activities in the field of ESG themes have

been shown to be e�ective and to create positive stock market reactions (Dimson et al. 2015;

Dyck et al. 2019; Nguyen et al. 2020).

The relationship between the investor and the firm is that between a principal and an agent. In

equitymarkets, agencyproblemsbetweenmanagers andshareholdershave traditionally been

1 Risk and uncertainties in the context of climate change damages as well as climate policy are discussed in
the literature on climate and energy economics, see e.g. Crost and Traeger (2014), Rudik (2020), Sinn (2008),
Fried et al. (2020), Wesseler and Zhao (2019), Pommeret and Schubert (2018), Barradale (2014), Yang et al. (2008),
Torani et al. (2016), and IEA (2007).
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a concern due to the disperson of ownership. The increasing number and size of institutional

investors have changed this relationship (Bebchuk et al. 2017). In the case of climate transition

risk, it is not a priori clear whether the principal or the agent should have a stronger incentive

to become active. Essentially, it can be seen as a question of the time horizon (and the ability

to deal with uncertainty) of managers vs. investors. The available literature suggests that

managers of listed firms tend to be driven by short-term performance goals; institutional

owners can back themwith a long-term commitment, allowing to take risks in the short term

for a more profitable future (Dimson et al. 2015; Aghion et al. 2013; Bushee 1998). This is

relevant in the context of R&D and technological change.

This paper uses firm-level panel data to test for the influence of institutional ownership on

the direction of innovation. The main data source is the Orbis database. It includes yearly

information on the shares of each owner in total market capitalization and distinguishes

between di�erent investor types. This allows to calculate the share of total institutional

ownership per firm and year, or shares of di�erent investor types. For instance, signatories of

the UN PRI or investors with a long time horizon (e.g. pension funds) would be expected to

have a larger interest in future climate risks than the average institutional investor. Further

firm-year specific control variables are also sourced fromOrbis, as well as other data suppliers.

Data on patents comes from the Orbis Intellectual Property (Orbis IP) database and can

be directly linked to firms. This paper classifies patents into green and fossil categories,

based on their technological classification codes, applying a modified classification based on

Dechezleprêtre et al. (2017). It then separately looks at the influence of institutional ownership

on green and fossil patenting to draw conclusions on investors’ preferences regarding the

direction of innovation. Patents are a useful measure when discussing the (potentially) long-

term horizon of institutional investors: they are the result of lengthy R&D e�orts which bear

fruit in the future. When successful, they grant the exclusive right to use an invention (in the

jurisdiction of the patent o�ice). Information on patents is publicly available. In particular,

typical investor newsfeeds include information on patent applications and grants.2 Moreover,

institutional ownership has been shown to increase patenting activities (Aghion et al. 2013).

2 Kogan et al. (2017) have recently used the attention of financial markets to patent grant events to derive a
measure for patent values.
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Studying green and fossil patents as an outcome variable of owners’ engagement o�ers the

advantage of being more clearly about climate issues than aggregate ESG scores.3 Moreover,

patents are rarely discussed in the broadermedia. This makes them an ideal measure to study

institutional investors’ motives beyond reputational issues, which are o�en the underlying

concernbehindESG“risks”. At the same time, theuseofpatents allows formoremiddleground

than approaches that divide firms into “clean” and “dirty” ones. Based on their innovation

activities, companies can be green and fossil at the same time; they can also gradually shi�

their activities over time. This kind of gradual pattern fits with those institutional investors

that use engagement rather than divestment.

To account for the count property of patent data and the path dependency of innovation, I

use a dynamic count data model in the spirit of Aghion et al. (2016), where patenting depends

on previous knowledge, knowledge spillovers, and R&D e�orts. The share of institutional

ownership is added as an additional explanatory variable. The model includes firm fixed

e�ects using the pre-sample meanmethod (Blundell et al. 1999). To control for patent quality,

I focus onpatents filed at oneof themainpatentingo�ices (EU,US, Japan)which are ultimately

granted. To account for potential bias through endogenous selection of investors, I apply

a control function approach. A firm’s institutional ownership share is instrumented by the

inclusion of the firm in a large stock index.

Tracking more than 1,200 firms worldwide over the years 2009-2018, I find no evidence for

investors’ engagement for directed innovation. Overall, the number of patent applications

increases with more institutional ownership. However, when looking at patents classified

as green or fossil, no e�ect can be detected. This is true for more disaggregate measures of

innovation (such as green/fossil transport and energy, respectively) and for more disaggre-

gate types of investors (e.g. signatories of the UN PRI or pension funds). There is a positive

association between climate-related opportunities mentioned in investor conference calls

and subsequent green patenting; it is di�icult, however, to ascertain that this e�ect is causal.

If institutional investors try to influence firms to become less susceptible to climate risk, then

these e�orts are not (yet) detectable in the innovation activities of firms.

3 Berg et al. (2019) show how the di�erent methodologies of measuring and combining di�erent issues in ESG
scores by di�erent providers leads to very heterogeneous scores within the same firm, giving rise to “aggregate
confusion”.
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Related literature This paper contributes to the literature on institutional investors and en-

vironmental concerns. Dyck et al. (2019) and Gibson and Krueger (2017) find that institutional

investors improve firms’ environmental and social performance; they do not look at climate

policy risk specifically, though. Azar et al. (2020) show that firms tend to reduce their carbon

emissions when the ownership share of the “Big Three” index funds (BlackRock, Vanguard,

State Street) increases, consistent with data on these firms’ engagement activities. Krueger

et al. (2020) report survey results showing that institutional investors are concerned with

climate risk, in particular regulatory risk; and that one of their preferredmodes of action is

engagement. Sautner et al. (2020b) use transcripts of investor conference calls to develop a

measure for firm-level exposure to climate risk, thusmaking use of statements bymanagers as

well as investors’ concerns. The paper at hand testswhether these stated concerns and actions

yield results in the technological sphere, using innovation activities as revealed engagement

outcomes. In this context, the paper draws on previous work on institutional investors and

innovation (Aghion et al. 2013; Borochin et al. 2020; Jiang and Yuan 2018; Rong et al. 2017;

Bushee 1998). It is also related to the literature on ownership structure and financing inno-

vation (Bernstein 2015; Chemmanur et al. 2014; Atanassov 2013; Lerner et al. 2011; Kerr and

Nanda 2015; Hall and Lerner 2010; Munari et al. 2010).4

It also connects with the literature on environmental policy and green innovation. Theoretical

work on climate policy and green innovation is mostly concerned with positive spillovers from

green innovation, path dependencies, and their interaction with climate policies (Acemoglu

et al. 2012; Fried 2018; Bretschger and Schaefer 2017; Di Maria and Smulders 2017; Lambertini

et al. 2017). Empirical studies confirm the relevance of knowledge spillovers in the context

of clean technologies (Dechezleprêtre et al. 2017; Verdolini and Bosetti 2017; Verdolini and

Galeotti 2011; Lanzi et al. 2011) and for overall innovation (Peri 2005), with heterogeneity

between sectors. Although path dependencies and spillovers are not themain focus of this

paper, these considerations have inspired the path-dependency model used in this paper’s

empirical estimations. In the empirical literature on policy impacts, several studies find a

positive e�ect of climate policies on green innovation (Kiso 2019; Calel and Dechezleprêtre

2016; Aghion et al. 2016; Nesta et al. 2014). This paper is methodologically closely related to

4 There is also a literature on “overlapping ownership” (also cross-ownership or common ownership), referring
to the fact that the same institutional investors tend to own shares in all or most of an industry’s competitors.
Overlapping ownership may a�ect competition (Vives 2020; He and Huang 2017; Borochin et al. 2020), also via
R&D spillovers (López and Vives 2019). This e�ect, or the generally established link between innovation and
competition (Aghion et al. 2005; Dasgupta and Stiglitz 1980), is not the focus of this paper.
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Aghion et al. (2016). It is the first to link the direction of innovation to institutional investors’

engagement activities.

The paper further contributes to the field of climate transition risk and financial markets.

Central banks and other financial institutions have voiced concerns that these risks may

not be adequately priced in yet in financial markets. Following an unexpected tightening of

policies or sudden changes in expectations, the re-pricing might occur suddenly and with

implications for financial stability (van der Ploeg and Rezai 2020; Monasterolo 2020; Batten

et al. 2016; European Systemic Risk Board 2016b). There is some empirical evidence that

stock market investors are aware of these risks and price them in when they receive new

information about regulation (Sen and von Schickfus 2020; Carattini and Sen 2019; Gri�in

et al. 2015; Ramiah et al. 2013). Especially the election of Donald Trump and the conclusion

of the Paris Agreement have been used as events which changed policy expectations (Kruse,

Mohnen, and Sato 2020; Monasterolo and de Angelis 2020; Ramelli et al. 2019; Mukanjari and

T. Sterner 2018).

However, the mentioned event studies focus on immediate stock market reactions, excluding

the engagement channel; moreover, firms are mostly selected as being “fossil” or not, leaving

no ground for gradual change within firms. A notable exception is Kruse, Mohnen, Pope, et al.

(2020), who use data on firms’ green revenues and find that firms providingmore environmen-

tal goods and services have, on average, a higher market valuation (measured by Tobin’s q).

Other strands of literature look at regulatory risk and the pricing of bank loans and corporate

bonds (Seltzer et al. 2020; Delis et al. 2019), and at the exposure of interconnected financial

markets to climate risk (Battiston et al. 2017). This paper is the first to examine technological

transition risk, and to focus on institutional investors.

The remainder of the paper is organized as follows: Section 2.2 provides some background on

patents and patent data characteristics. Themethodological approach is presented in section

2.3, and section 2.4 describes the data sources and the construction of the dataset. Section

2.5 presents and discusses the results. Section 2.6 concludes.

2.2 Patents: background and classi�cation

This section describes relevant patent data characteristics and how to classify patents by

technology. Section 2.4 gives details on the data sources and provides summary statistics.
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Patents protect intellectual property rights: Individuals and firms apply for patenting in order

to receive the exclusive right to use their invention. An example of a patent (its first page) can

be found in Figure B.1 in Appendix B.1. Patent applications are examined by patent o�ice

examiners, whose task is to ensure that only novel innovations are protected. Patents are

o�en applied for at several patent o�ices to ensure protection in the relevant markets. All

patent applications with the same content at di�erent o�ices are referred to as one “patent

family”. Patents also cite other patents, i.e. previous knowledge; they are themselves cited by

other patents (forward citations).

Applications, examinations and generating citations all takes time. Table 2.1 shows the devel-

opment of numbers for di�erent patent measures in this paper’s sample over time. Due to

the nature of the patenting process, the number of patent applications in the data appears

to decrease in recent years (see the column “Patents”): the closer we are to today, the fewer

patent applications have actually been published and are available in the data - although it is

very likely that applications have been filed.5

Table 2.1 : Mean number of patents, family size and citations over time

Year Patents Family size Citations
2010 109.68 399.60 281.11

2011 109.02 389.46 273.82

2012 119.81 413.71 273.22

2013 116.61 390.00 197.16

2014 106.75 345.31 148.77

2015 107.25 320.00 124.30

2016 75.05 205.93 77.61

2017 51.10 120.74 28.39

2018 24.28 49.24 4.45

Average 89.93 287.35 150.85

Notes: Numbers are shown for patents (all technology types) applied for in the given year.
Patent numbers are based on a sample of publicly listed firms which filed at least one
patent classified as green or fossil in the sample period. Due to the lagged structure of the
estimation, the sample period for patents is 2010-2018.

Like previous work on green innovation, this paper exploits the fact that examiners classify

patents by technological field. There are twomain classification schemes: The International

Patent Classification (IPC) and the Cooperative Patent Classification (CPC). The latter is the

result of e�orts of the European Patent O�ice (EPO) and the US Patent O�ice (USPTO) to

harmonize their systems. Each patent is usually assigned several technology classes. Within

5 Table B.5 shows the development of the counts over time separately for patents classified as green and fossil.
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the CPC, a special Y category has been introduced to mark climate-friendly innovations. This

is helpful, but not su�icient, to identify in particular fossil-based patents.

To classify patents as green and fossil, I use a slightly modified version of the classification

by Dechezleprêtre et al. (2017) into clean and dirty patents.6 Examples for fossil transport

categories are F02F, Cylinders, pistons, or casing for combustion engines; arrangements of

sealings in combustion engines, or F02N, Starting of combustion engines. Green transport

includes, for instance, B60K 1, Arrangement or mounting of electrical propulsion units, or

B60L 8, Electric propulsion with power supply from force of nature, e.g. sun, wind. For energy,

corresponding categories would be Y02E 10 (Energy generation through renewable energy

sources) and F23 (Combustion apparatus; combustion processes).

In reality, it is sometimes hard to identify climate-friendly innovation. For instance, there

are inventions that make the use of fossil fuels more e�icient and reduce emissions (Lanzi

et al. 2011). Following Dechezleprêtre et al. (2017), I introduce a third category (in robustness

checks): grey patents. Most of these technologies make combustion (in engines or power

plants) more e�icient, and they are thus a subset of the fossil technologies. In the case of

energy, the grey category also includes the production of fuels of non-fossil origin, e.g. biofu-

els. However, all of these technologies have only limited potential to address technological

risk, which is mainly about the phase-out of fossil-based technologies. Improving existing

technologies at the margin may be successful in the short andmedium run, but does not help

on the way to new, carbon-free systems. An overview of the classifications for transport and

energy-related patents can be found in Tables B.1 and B.2 in Appendix B.1.

The literature agrees that plain patent counts are a very imprecise measure, since patent

quality (or value) is highly skewed (seeAghionet al. 2013, for example). It is therefore important

to account for patent quality. As a first step, I filter patents based on the o�ices where they

were filed. Only patents applied for at the US, EU, or Japanese patent o�ice are considered. In

a second step, patents were filtered to only include granted patents.

In robustness checks, family size and citations are used instead of patent counts. Family size

measures the number of patent o�ices where the patent has been applied for: it is a measure

6 I am using the term fossil instead of dirty due to the focus on climate change and climate risk: CO2, the result
of burning fossil fuels, is not a pollutant, but a greenhouse gas. Climate risk a�ects fossil-based technologies, but
doesnot a�ect all “dirty” technologieswith anyenvironmental externalities. In the samevein, not all technologies
replacing fossil fuels are automatically “clean” (biomass-fired power plants, for instance, do contribute to air
pollution). The term green is therefore used to describe technologies which replace fossil-based technologies.
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for the importance the inventor attaches herself to the patent. If the inventor considers

the invention to be of high value, she will opt to protect (and use) it in many jurisdictions.

Protection at several o�ices incurs direct and administrative costs, so we can assume that it is

a conscious decision of the inventing firm to increase a patent’s family size. Citations, on the

other hand, are ameasure for the relevance that others attach to the patent: if the invention is

cited by other patents, it is su�iciently novel and relevant to spur further innovation. Citations

can be regarded as ameasure for the scientific value of a patent; family size is closer to the

commercial value of the patent.

The censoring issue discussed above is also relevant for the choice of patent measure. As

Table 2.1 shows, the downward trend over time is particularly pronounced for citation counts.

This is not surprising: citations accumulate over time, and patents applied for in 2018 did

not have much time to collect citations. It is generally possible to take care of this issue by

using year fixed e�ects. With count data, however, the amount of zeroes can become quite

large towards the end of the sample, impeding estimations. Family size also decreases faster

over time than plain patent counts - the process of applying for protection at di�erent patent

o�ices takes time as well, and this lag may di�er between technologies and sectors. For this

reason, the standard patent measure used in this paper is the patent count. Family size and

citations are included as a robustness check.

2.3 Empirical approach

2.3.1 Path dependencymodel

The question of this paper is: do institutional investors influence green and/or fossil patenting,

and if yes, in a di�erent way? I therefore test for the impact of the ownership share of institu-

tional investors on green and fossil patenting. The idea for the econometric specification is

inspired by the dynamic path-dependency model by Aghion et al. (2016). In such a model,

the amount of patenting depends on the firm’s own stock of patents; on innovation spillovers

from other firms in the country; and on R&D investments. Since most of the path-dependent

explanatory variables can be derived for green and fossil patent classifications, the model

can be used to separately assess the impact of institutional ownership on green and fossil

patenting. In the following, the subscripts G and F are used to refer to green and fossil
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patents, respectively. For the exposition, green patents are used as the default example for

the dependent variable.7

Following the literature standard, a Poisson specification is used to account for the count

nature of the dependent variable. The model including institutional ownership reads

PATG,it = exp(αG + βG,IOIOit−1 + βG,1 lnKG,it−1 + βG,2 lnKF,it−1

+ βG,3 lnSPILLG,it−1 + βG,4 lnSPILLF,it−1 (2.1)

+ βG,5R&Dit−1 + τG,t + ηG,i + εG,it),

where

– PATG,it is the count of green patents applied for by firm i in year t;

– IOit is the percentage of institutional ownership in firm i in year t− 1;

– KG,it−1 is the firm’s pre-period green patent stock;

– KF,it−1 is the firm’s pre-period fossil patent stock;

– SPILLG,it−1 are country-level green spillovers to firm i in period t− 1;

– SPILLF,it−1 are country-level fossil spillovers to firm i in period t− 1;

– R&Dit−1 are R&D expenditures of firm i in year t− 1;

– τG,t is a year fixed e�ect;

– ηG,i is a firm fixed e�ect; and

– εG,it is an error term.

Institutional ownership is a continuous variable reflecting the relative quantity of institutional

ownership compared to other owners. The literature on institutional owners suggests that

this quantitymakes a qualitative di�erence: (Many) large investors havemore (joint) influence

in proxy votes, conference calls, etc.

7 Further categories are possible, such as green transport patents, grey patents, or total patents; these are
introduced later in the text.
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Essentially, the idea of Equation 2.1 is to single out the influence of institutional ownership

while controlling for already existing knowledge stocks (due to own patenting and spillovers)

and the inherent path dependency. Previous own knowledge on green technologies,KG,it−1

can explain further innovative activities in this direction. SPILLG,it−1 are country-level green

innovation spillovers, based on the assumption that an environment of domestic firms with

knowledge on green technologies is conducive to each firm’s innovation in this direction.

Following Aghion et al. (2016), previous knowledge on fossil technologies and fossil spillovers

are also included (KF,it−1, SPILLF,it−1). This specification is derived from the observation

that many firms with a track record in fossil innovation become active in green innovation:

the technologies are used to serve similar markets, e.g. in the car industry. The construction

of knowledge stocks and spillovers is discussed in detail in section 2.4.

However, patents of course are not generated simply out of previously existing patents. Re-

search and Development is a further obvious part of the firm’s production function of patents

(see also Hall et al. 2005). The inclusion of R&D is particularly useful in the context of this

paper’s research question. R&D expenditure controls for the overall R&D e�orts, so any change

in green or fossil patents we observe can be more clearly interpreted as a directional change,

as opposed to a pure increase.8 In addition, investors may observe R&D e�orts and select into

firms with higher R&D expenditures, expecting larger innovation output; this would cause an

omitted variable bias and an overestimation of investors’ influence.

In robustness checks, twomore control variables are used: Tobin’s q and firm-specific climate

exposure (see section 2.3.5 for details). Onemight think of other firm-specific variables that

are associated with innovation, like financing constraints or firm size. Including measures

for tangibility, leverage, operating revenue, capital-labor ratio, or profits did not significantly

alter the outcome, so the corresponding results are not included in this paper.

8 Contrary to e.g. Aghion et al. (2013) and Hall et al. (2005), this paper uses yearly R&D spendings instead of R&D
stocks. There are twomain reasons for this choice. First, the specification in equation 2.1 already accounts for
knowledge stocks, measured by patents. The additional value of the R&D variable (which does not appear in the,
otherwise very similar, specification of Aghion et al. 2016) lies in capturing additional innovation e�orts which
are on top of, and separate from, existing knowledge stocks. The second reason is a data concern. Many firms in
the sample have incomplete R&D time series, making the construction of R&D stocks di�icult and error-prone.
Sticking with yearly expenditures - and excluding missing firm-years from the analysis - is thus the safer variant.
Test regressions (not shown) were run using R&D stocks, without significantly a�ecting results.
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2.3.2 Firm fixed e�ects

Equations 2.1 and 2.3 include firm-level fixed e�ects: Unobserved heterogeneity between

firms needs to be controlled for. In Poisson estimations, the standard approach is to use

the conditional fixed e�ects estimator proposed by Hausman et al. (1984). Put simply, it

conditions on the sample average of the observable variables. The conditional fixed e�ects

estimator requires strict exogeneity of the explanatory variables. This assumption is violated

in a dynamic panel datamodel such as Equation 2.1, which exhibits serial correlation between

innovation stock measures.

Therefore, analternativeapproach tomodelling firm fixede�ects is used: thepre-samplemean

estimator proposed byBlundell et al. (1999) (BGVR), which has been used in the environmental

context e.g. in Nesta et al. (2014). The idea is to condition on the pre-sample mean of the

dependent variable to proxy out the fixed e�ect. This approach is particularly well suited

to patent data, because patent data is typically available in pre-sample years. Blundell et

al. (2002) show that this estimator leads to some bias, but increasing the number of pre-

sample periods (and, to a lesser extent, the number of in-sample periods and the number

of observation units) improves performance. The pre-sample mean enters the estimation in

logged form.

For the research question at hand, the choice of pre-sample periods means dealing with a

trade-o�: more pre-sample information is generally desirable, but green technologies are a

relatively “young” phenomenon. Pre-sample averages of green patenting going back a long

timemay not be useful to reflect current firm characteristics regarding green innovation.9 In

this analysis, the pre-sample average for the years 1995-2008 is used. This is a reasonable

amount of years and at the same time, years with measurable patenting activity in both green

and fossil areas are covered.10

2.3.3 Selection issues and control function

One concern when estimating Equation 2.1 is the selection of investors into firms. The co-

e�icient on institutional ownership share may be biased if investors select into firms with

9 Aghion et al. (2016), who have a sample covering the years 1986 to 2005, argue against the use of the BGVR
method for this reason: green patenting in the early 1980s was not a good indicator for green patenting in the
early 2000s.
10 In a robustness check (not shown), the average for the years 2000-2008 was used, since the data show higher
green patenting activity a�er 2000. The estimation results are virtually the same.
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more expected green (or more fossil) innovation. Most investors use a combination of strate-

gies to deal with climate risk; so it is possible that some investors select the most promising

green-innovation firms, others try to encourage green innovation, and others do both.

I therefore use a source of exogenous variation in institutional ownership: The inclusion of a

firm in a large stock index. It has beenwidely used as an instrument for institutional ownership

(Aghion et al. 2013; Crane et al. 2016; Appel et al. 2016). The idea is that many institutional

investors either directly track such indices, or their managers are benchmarked against them.

Therefore the instrument is expected to be correlated with institutional ownership. For it to

fulfill the exclusion restriction, I need to rule out a relationship between pre-period index

membership on this year’s (green / fossil / total) patenting, controlling for observables. It is

therefore helpful to understand the selection of index members.

Indexmembership is decided on by Index Committees; none of their criteria explicitlymention

innovation. One of themain criteria for inclusion in a large stock index ismarket capitalization.

Also, firms need to fulfil basic eligibility criteria to be added to an index, such as certain thresh-

olds for free-float market capitalization and earnings in the quarters prior to index admission.

Theremay be a concern that a firm’smarket value increases in expectation of future patenting,

and this leads to admission to the index. All estimations control for R&D expenditures and thus

for the observable part of innovation activities that may result in patents. I also show in Table

B.12 that Tobin’s q, a measure for above-fundamental market valuation, is not a significant

predictor of innovation. In the first-stage regressions, the coe�icient of Tobin’s q is insignificant

aswell, implying that thismeasure ofmarket valuation does not a�ect institutional ownership,

controlling for other observables. It has also been shown that markets price in most of the

value of patents at a later stage: when a patent is granted (Kogan et al. 2017).11

Moreover, Index Committees do not simply decide based on fixed criteria. For instance, it

is the explicit goal of the S&P 500 Index to be representative of the US economy in terms

of sector coverage. Also, if a current index member does not fulfil the eligibility criteria any

more, this does not automatically lead to exclusion. Index managers are interested in a stable

11 Considering the eligibility criteria, the relationship between high free-float (with, e.g., low family or manage-
ment ownership) and innovation is not a priori clear, and the evidence on family or management ownership and
innovation is mixed (Munari et al. 2010; Schmid et al. 2014; Beyer et al. 2012; Ortega-Argilés et al. 2005). Looking
at earnings, it is di�icult to think of a reason why higher earnings would be followed by patent filings, given that
the required R&D expenditures reduce earnings.
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composition of the index. This discretion provides another source of variation that is not

related to other firm variables.

I define the instrument indexmemberit as a dummy equal to one if a firm was a member

of the S&P 500, the STOXX Europe 600 and/or the S&P Global 1200 index in year t. These

indices cover a wide range of countries, while still being exclusive enough to have explanatory

power. Given the nonlinear model, the instrument enters the estimation in a control function

approach (Wooldridge 2010). In the first stage (OLS), institutional ownership is regressed

on the instrument and all control variables of the second stage. The residuals from this

estimation - i.e., the part of institutional investors’ ownership that cannot be explained by

the instrument - are then included as a control variable in the second-stage regression. As a

result, the coe�icient on IOit reflects the e�ect of the part of institutional ownership that is

due to the index membership of the firm.

2.3.4 Heterogeneity of sectors and institutional owners

Themeasurement of green and fossil patents is noisy. Some of the noise can be addressed

by di�erentiating between sectors. The transport and the energy sector are quite di�erent,

and it is well possible that innovation and patents play a di�erent role in the two sectors. For

capital-heavy energy firms, their fossil fuel reserves or power generating infrastructure are

important assets which are directly a�ected by climate policy, whereas intangible assets such

as patents are likely to play a smaller role. In the transport industry, by contrast, knowledge

and innovation are relatively more important.

In separate regressions, Equation 2.1 is modified accordingly to reflect green/fossil transport

and energy patents separately. The estimated equation for green transport patents, denoted

byGT , thus reads

PATGT,it = exp(αGT + βGT,IOIOit−1 + βGT,1 lnKGT,it−1 + βGT,2 lnKFT,it−1

+ βGT,3 lnSPILLGT,it−1 + βGT,4 lnSPILLFT,it−1 (2.2)

+ βGT,3R&Dit−1 + τGT,t + ηGT,i + εGT,it).

Models for fossil transport and green/fossil energy patents can be derived analogously.
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Similarly, there is noise in the measurement of institutional ownership: there are many di�er-

ent typesof institutional investors, and theymayhavequite di�erent investment/ engagement

strategies, time horizons, or environmental concerns. Oneway to deal with the noise is to look

at these di�erent types specifically. The literature on institutional owners’ engagement sug-

gests some time-invariant types which are expected to have long-term investment strategies

(Hsu and Liang 2017; Borochin et al. 2020). Insurance companies and pension funds are prime

examples. Government ownership is also typically long-term and stable; state-owned enter-

prises have been shown to perform better environmentally. Moreover, domestic investors

(sharing the portfolio firm’s headquarter country) may have better opportunities to engage.

In the context of sustainable finance, it is also possible to exploit a time-varying investor

type, namely signatories of the UN Principles for Responsible Investment (UN PRI) initiative

(see also Dyck et al. 2019). Principle 2, for instance, reads: “We will be active owners and

incorporate ESG issues into our ownership policies and practices.”12 The UN PRI sees itself

as “the world’s leading proponent of responsible investment”. The initiative was launched in

2006 and currently has more than 3,000 signatories. With their membership, investors declare

their willingness to implement the six principles.

In the literature on institutional investors, the role of engagement has been very prominently

discussed in the context of the big passive index funds. Instead of actively managing funds,

thesehold relatively fixedpositions as theyaremirroring certain stock indices. Thismeans they

cannot easily sell their positions, and some argue that this limits their shareholder power. On

the other hand, they have an incentive to use engagement, since this is the only way they can

manage risk. A growing literature showshow thebig indexers use their voting power in director

(re-)elections and other governance choices (Fichtner et al. 2017; Appel et al. 2016), support

activists (Appel et al. 2018), and have an influence on firms’ emission reductions. In this light,

direct engagement activities with management seem to be a successful strategy even, or

particularly, for big “passive” investors. Therefore, the “Big Three” index fund investment

companies (BlackRock, Vanguard, and State Street) are defined as another investor type.

To account for investor type heterogeneity, the variable IO from Equation 2.1 can be replaced

by specific sub-groups of institutional owners: government (GOV ), insurance and pension

12 Stated on the PRI website, see https://www.unpri.org/pri.
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funds (INP ), domestic owners (DOM ), signatories of the UN Principles for Responsible

Investment (UN PRI) initiative (PRI), and “Big Three” investment companies (BIG3).13

2.3.5 Informational value of nonsignificant results

Aswill be shown indetail in section2.5onResults, I donot finda statistically significant e�ect of

institutional ownership on green or fossil innovation. I therefore conducted some additional

estimations, which are not robustness checks in the typical sense. The usual robustness

checks aim to rule out a type I error, i.e., falsely rejecting the null hypothesis. The additional

estimations presented here are rather attempts to rule out a type II error: failure to reject the

null despite an actually existing relationship. Abadie (2020) argues that insignificant estimates

can be highly informative: it is interesting to learn that a previously expected relationship

does not exist. The question is whether insignificant estimates are meaningful, i.e. can be

interpreted as “no e�ect”. Type II errors are most likely to result from data quality or research

design issues. The two specifications presented in the following aim to answer the question

whether research design or data quality are a concern.14

Institutional ownership and total innovation A first check concerns the overall setup of

the model, and the su�iciency of data variation in the institutional ownership variable. The

relationship between institutional ownership and patenting is an established result (Aghion

et al. 2013). If the data andmodel usedhere cannot confirm this result, the researchdesign and

/ or the measurement of the institutional ownership would need to be re-examined. Equation

2.3 tests whether institutional ownership a�ects total innovation (denoted byA):

PATA,it = exp(αG + βA,IOIOit−1 + βA,1 lnKA,it−1 + βA,2 lnSPILLA,it−1

+ βA,3R&Dit−1 + τA,t + ηA,i + εA,it). (2.3)

In this case, previous own knowledge and spillovers in terms of all technologies are included

as explanatory variables. In a robustness check, Tobin’s q is also included. Tobin’s q is defined

as (marketcapitalization+totaldebt)/totalassets and is therefore ameasure of themarket’s

future expectations deviating from current fundamentals. As argued in Aghion et al. (2013),

13 Further investor type definitions are possible (see section B.2), but are less likely to be relevant in a climate
context, and their results are not shown in the paper.
14 In addition, section 2.5.1 provides results for some specification alterations that also partly address this
question. Section 2.6 provides a general discussion of the plausibility of the results.
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themarket valuation of firmsmay be an omitted variable in a regression involving institutional

ownership and innovation. It is correlated with the number of patents and could be correlated

with institutional ownership, since institutional owners are more likely to invest in firms with

high market valuation.

Firm-specific climate concerns: “climate exposure” The second approach addresses the

question whether there is su�icient statistical power in the dependent variable(s), i.e. in the

counts of green and fossil patents; it also addresses the question whether the degree to which

firms are a�ected by climate issues play a role in explaining innovation. The degree to which

firms are a�ected by, or concerned about, climate issues varies between firms and over time.

Previous research has shown that firms facing higher fuel taxes tend to patent more in green

technologies, and less in fossil technologies (Aghion et al. 2016). It is logical to test whether

the panel used in this paper can confirm the relationship between firm-level climate policy

impacts and the direction of innovation.

In the context of the research question on institutional ownership and risk from future climate

policies, a newly developedmeasure is particularly useful: “climate exposure”, an indicator

derived from conference calls betweenmanagers and investors. This indicator, developed by

Sautner et al. (2020b), measures the relative frequency with which climate-related issues are

mentioned in these conference calls.

As climate-related issues can be quite broad and diverse, four di�erent sets of bigrams (expres-

sions) are used: one for broadly defined climate change aspects (“climate change exposure”

or “exposure to a climate change-related shock”), and three for more specific topics. These

are physical, regulatory, and opportunity shocks, relating to physical climate change-induced

events (such as heatwaves or sea-level rise), regulatory changes (such as CO2 pricing), and

opportunities (capturing opportunities related to climate change issues, mostly green tech-

nologies). Since physical shocks are unlikely to influence green or fossil patenting (the patent

classifications do not include technologies for adaptation to climate change), the measures

used in this paper are “climate change exposure”, “regulatory exposure”, and “opportunity

exposure”. Table 2.2 shows the top 10 bigrams contributing to general climate exposure,

regulatory exposure, and opportunity exposure, respectively.

To interpret the exposure measures, it is helpful to think of them as “firm-level exposure to a

particular shock”, where the shock can be positive or negative. For opportunity shocks, on
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Table 2.2 : Top 10 bigrams contributing to climate exposure measures

Climate exposure Regulatory exposure Opportunity exposure
renewable energy greenhouse gas renewable energy
electric vehicle reduce emission electric vehicle
clean energy carbon emission clean energy
new energy carbon dioxide new energy
wind power gas emission wind power
wind energy air pollution wind energy
energy e�icient reduce carbon solar energy
climate change energy regulatory plug hybrid
greenhouse gas carbon tax heat power
solar energy carbon price renewable resource

Notes: These bigrams are the “top 10” since they enter the respective measures with the largest weights.
Source: Own representation based on Sautner et al. (2020b).

could think of clean technology subsidies or R%D incentive schemes. However, the “shocks”

can also originate from within the firm, if it initiated or completed green technology develop-

ment. Conference calls are held in conjunction with firms’ quarterly earnings reports, and

investors tend to be interested in the firm’s future outlook. The exposure indicators therefore

most likely include current climate policy impacts as well as expectations for future impacts.

At the same time, they tell us something about the awareness of this amongmanagers and

investors.15 Being firm- and year-specific, they go beyond a general notion of “transition

risk” due to multilateral climate agreements; they are more likely to capture (expectations of)

implemented policies.

To incorporate these measures of impacts, expectations and awareness, Equation 2.1 is ad-

justed to read

PATG,it = exp(αG + βG,IOIOit−1 + βG,1 lnKG,it−1 + βG,2 lnKF,it−1

+ βG,3 lnSPILLG,it−1 + βG,4 lnSPILLF,it−1 (2.4)

+ βG,5R&Dit−1 + βG,6CCExpE,it−1 + τG,t + ηG,i + εG,it),

where CCExpE,it−1 is firm i’s climate exposure in year t − 1, and E stands for the type of

exposure: overall, regulatory, or opportunity. Note that the share of institutional ownership

in the firm is still included in the regression. CCExp is a measure that combines firm-specific

15 Unfortunately, the available data does not distinguishwhether issues arementioned bymanagers or investors.
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exposure toclimate-related shockswith the intensityof their discussionbetweenmanagement

and investors.

If no e�ect of climate exposure on green or fossil innovation can be detected, this would

be an indication that there is not enough meaningful variation in the dependent variable.

The coe�icient onCCExp is also an interesting outcome in itself: it shows whether a more

forward-looking firm-level climate indicator, reflecting awareness at manager and investor

level, can explain firm-level innovation.16

2.4 Data

The main sample consists of 1, 261 publicly listed firms over 10 years (2009-2018), with an

average of 90 patents per firm per year. Table 2.3 provides summary statistics for the main

variables. Typical for patent data, all patent counts are highly skewed, with the maximum far

away from themean. The same is true for R%D expenditures. The institutional owner share of

40.6% on average is comparable to data reported in the literature (Dyck et al. 2019; Bebchuk

et al. 2017).

Table 2.3 : Summary statistics

Mean Standard deviation Minimum Maximum
All patents 89.93 316.17 0 7,975
Fossil patents 3.08 20.22 0 708
Green patents 2.47 16.93 0 794
Patent stock 633.6 1,960.3 0 36,324.3
Fossil patent stock 20.4 118.3 0 4,404.1
Green patent stock 16.3 99.9 0 3,845.9
Spillover 259,268.6 218,863.6 0 584,411.2
Fossil spillover 9,183.1 9,491.4 0 24,151.9
Green spillover 7,577.0 8,560.5 0 21,157.4
R & D exp., in thousand USD 1,117,383 6.96·106 0 6.43·1012
IO share, in percent 40.64 27.10 0 100

Climate-relevant – i.e. fossil or green – patents account for about 6% of total patents. Note

that the sample is restricted to firms which have filed at least one climate-relevant patent

in the sample period. Green and fossil patents are quite similar in terms of patent counts,

16 More details on the construction of the climate exposure variable can be found in Appendix B.3.
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patent stocks and spillovers, with green innovation always slightly below fossil. Table B.4 in

Appendix B.4 shows the respective averages for family size and citations.

Themain data source for patents, firms and ownership is Orbis and Orbis Intellectual Property,

o�ered by Bureau van Dijk (BvD). Orbis provides information onmore than 300million compa-

nies worldwide, with the data including standardized financials, ownership links, andmore.

Ownership data Data on ownership is recorded in the Orbis Historical Database. It provides

links between firms and their shareholders, listing the respective ownership shares. The

ownership data is collected from various sources, leading to over-reporting in the dataset.

Extensive manual checks were done to rule out duplicates. In case a duplicate was identified,

preference was given to the most recent reporting, to the most comprehensive (and thus

consistent) data sources,17 or to the parent company in case of holding reportings.

The ownership data allows to distinguish between di�erent investor types based on their

NACE codes and BvD classifications. Details on the mapping can be found in section B.2 in

Appendix B.2. In addition, the headquarter country of each investor is recorded in the dataset,

allowing to identify domestic investors.

Information on the investors’ signature dates in the United Nations Principles for Responsible

Investment initiative is from the PRI’s website.18 The PRI signatories are only available by

name. They were matched to the investor dataset using a fuzzy matching approach as a first

step; this was augmented with amanual check of the matches. In some cases, it is di�icult

to find out from an investor’s PRI reporting which parts of the company can be counted as PRI

signatories. Thematches were checked with the greatest care possible, but somemismatches

can not be ruled out.

Summary statistics for the di�erent owner types can be found in Table B.6 in Appendix B.4.

The average share of governments and Big Three investors is lowest; the ownership share of

domestic owners is the highest of all types used (27.7% on average, more than half of total

17 Themost prevalent data source, and therefore most consistent across firms and years, is Factset. Factset is
an independent data provider collecting data on large investors’ holdings, based on filings with national stock
exchange supervision authorities. Themost well-known are the so-called “13F” filings, which are mandatory
for investors in US-listed firms when their share crosses a certain threshold. Unfortunately, the sample could
not be restricted to Factset alone, since in many cases important investors appeared under di�erent sources in
di�erent years in the same firm.
18 https://www.unpri.org/signatories/signatory-directory
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institutional ownership, and with a maximum value of 100%). In the shares of governments

as well as insurance and pension fund companies, the variation is somewhat larger than for

the other groups.

Patent data Orbis Intellectual Property is the result of a matching between PATSTAT (a

worldwide patent database run by the European Patent O�ice) and Orbis. Linked to company

IDs, it provides rich information on each patent, including its classification, date of publication,

and application o�ices. The dataset in this paper consists of all patents which were filed at

the European Patent O�ice (EPO), the US Patent and Trademark O�ice (USPTO), the Japanese

Patent O�ice (JPO), or the World Intellectual Property Organization (WIPO) in the relevant

period; whichwere ultimately granted; andwhich can be linked to a listed firm (either through

direct or indirect ownership, currently or formerly).

The database o�ers information of the applicant firm(s), current direct owner(s), and current

indirect owner(s) of the patents. The patents were thus assigned to firms based on the original

applicant (or several original applicants), if this original applicant is a listed firm. If the original

applicant is not listed, but the current indirect owner is (and if there has been no ownership

change), then the patent is assigned to the indirect owner. Since the database does not easily

allow to track indirect ownership of firms over time, cases with changes in ownership are not

assigned an indirect owner. Changes in ownership are determined by a) using the label “with

ownership change” from Orbis, and b) by ensuring that the data lists the applicant also as

the direct owner.

The estimations use patent applications (a flow) as the dependent variable, but patent stocks

as explanatory variables. In line with the literature, these patent stocks are calculated using

the perpetual inventory method. Firm i’s green patent stock in year t,KG,it, is equal to the

discounted flow of green patents in the previous years:

KG,it = PATG,it + (1− ρ)KG,it−1, (2.5)

and symmetrically for fossil (KF,it) or all patents (KA,it), respectively. A discount rate of

ρ = 0.15 is used, which is in themedium range of depreciation rates for intellectual capital

used in the literature.19

19 For example, Aghion et al. (2016) use 20%; Peri (2005) uses 10%, Hall et al. (2005) and Cockburn and Griliches
(1988) use 15%.
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Spillovers are accounted for in a relatively straightforward way. A firm’s green spillover at time

t is equal to the sum of green patents applied for in the firm’s country c at time t, minus the

firm’s own green patent applications in that year:

SPILLG,it =
∑
j∈c

PATG,jt − PATG,it. (2.6)

In all expressions involving the log of a number of patents (i.e. lnK, lnSPILL, as well as the

pre-sample mean), I follow the literature standard of replacing zeroes by an arbitrary small

constant and including dummies for the number of patents being zero (Aghion et al. 2016;

Blundell et al. 1999).

Firm data Firm-level data on R&D expenditures and Tobin’s q is from the Orbis Historical

Database. BvD firm-level data is mainly sourced from companies’ mandatory filings. For com-

panies with subsidiaries, sometimes both unconsolidated and consolidated (including sub-

sidiaries) reporting is available. Whenever a company appears as an indirect patent applicant

(or as both direct and indirect), and both filing versions are available, then the consolidated

reporting version is used. In further regressions, more firm-level characteristics were used as

control variables (such as operating revenue, capital-labor ratio), but as they did not alter the

results, the respective regressions are not shown in the paper.

Firm-level data is augmented by other sources: Thomson Reuters Datastreamwas used to

extract time series of index constituents of the STOXX Europe 600 and S&P Global 1200 indices.

The time series of the S&P 500 is fromWharton Research Data Services (WRDS).

In addition, the Sautner et al. (2020a) data was merged to the firms to cover firm-level climate

exposure and its recognition with managers and investors. Since all firms in the sample are

publicly listed, ISINs (International Securities Identification Numbers) of their traded shares

could be used to match the firms. The climate change exposure data is limited in terms of

firm coverage and in terms of time series coverage per firm, reducing the sample size of the

dataset to roughly half of the original dataset. Summary statistics for the reduced sample can

be found in Table B.7 in Appendix B.4. Firms in the climate exposure sample have filed more

patents (in all categories), have higher R&D expenditures, and a higher institutional owner

share than the average of the full sample.
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2.5 Results

2.5.1 Institutional owners and climate-relevant innovation

Table 2.4 show the main results for Equation 2.1, separately for green and fossil patents. For

each estimation, the first stage of the control function approach is shown in an extra column.

As can be seen from columns 2 and 4, the indexmember instrument is positive and significant:

Institutional investors own about 2.3 percentage pointsmore stocks inmembers of large stock

indices than we would expect from other observables.

Table 2.4 : Green and fossil patents

(1) (2) (3) (4)
Model Poisson OLS (first stage) Poisson OLS (first stage)
Dep. var. Green patents L.IO share Fossil patents L.IO share
L.IO share 0.0227 0.0103

(0.0561) (0.0387)
L.Own stock green 1.464∗∗∗ -1.341∗∗∗ 0.0224 -2.550∗∗∗

(0.104) (0.493) (0.107) (0.268)
L.Own stock fossil 0.134∗∗ -1.076∗∗∗ 1.321∗∗∗ -2.556∗∗∗

(0.0617) (0.264) (0.122) (0.524)
L.Green spillover 0.544 -20.05∗∗∗ 0.212 -20.01∗∗∗

(1.141) (0.788) (0.783) (0.781)
L.Fossil spillover -0.515 20.24∗∗∗ -0.223 20.15∗∗∗

(1.147) (0.791) (0.787) (0.783)
L.R and D exp. 0.0131 3.962∗∗∗ 0.0943 4.012∗∗∗

(0.238) (0.170) (0.171) (0.171)
L.Index member 2.286∗∗∗ 2.291∗∗∗

(0.705) (0.705)
Observations 8621 8621

Notes: Robust standard errors in parentheses. Knowledge stocks, spillovers and R&D expenditures are in
logs. Estimation period is 2009-2018. All regressions include year fixed e�ects and firm fixed e�ects using the
BGVRmethod. Significance levels are indicated as ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

A�er controlling for their endogeneity, the influence of institutional investors on both green

and fossil patenting is positive, but statistically indistinguishable from zero. Based on the

aggregate measures of green and fossil patents as well as institutional ownership used here, I

cannot say that there is any causal relationship between institutional ownership and green or

fossil patenting.

The results do, however, qualitatively confirm the findings from Aghion et al. (2016) on path

dependency: A higher fossil (green) patent stock significantly increases the probability of filing

another fossil (green) patent. The data also confirm another result, namely that a firm’s fossil
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knowledge stock is also associated with more green patenting, whereas the green knowledge

stock does not a�ect fossil patent applications. Overall, the path dependency model seems

to fit the data quite well. The very simple spillover measure applied in this estimation is not

significant though, neither for green nor for fossil patenting.

Accounting for sector heterogeneity As mentioned in section 2.3.4, the aggregate mea-

sures on green and fossil patenting may hide some important di�erences between the energy

and the transport sector. Most likely, (green) innovations play a larger role in the transport

sector than in the capital-heavy energy sector. Moreover, product market competition likely

di�ers between these sectors, with implications for the innovation process and ownership.20

Table 2.5 therefore shows results for green and fossil patents in the transport (columns 1

and 2) and energy sector (columns 3 and 4) separately. In all cases, the coe�icient on institu-

tional ownership is small or even negative, and the null hypothesis of it being zero cannot be

rejected.

Again, the general path dependency model performs well: Both green and fossil transport

knowledge stocks influence green transport patenting positively, while green transport knowl-

edge is not associated with an increase in fossil transport patenting – this is in line with the

results in Aghion et al. (2016), which are in fact focused on the transport sector. In the case of

energy-related patents, the same pattern can be observed with very similar coe�icients. This

suggests that the specification in Equation 2.2 works well for both sectors.

Accounting for investor heterogeneity The insignificant influence of institutional owners

on the direction of innovation may also be due to the underlying heterogeneity of investors,

as mentioned in section 2.3.4.21 Not all institutional owners invest with a long time horizon,

not all of them have voiced an interest in climate change issues, and not all of them are prone

to engage. The results for the e�ect of di�erent types of investors on green innovation can be

found in Table 2.6. This table only shows the coe�icient for investor type ownership; the full

tables for green as well as fossil innovation can be found in Appendix B.5 (Tables B.10 and

B.11).

20 For the relevance of competition in the context of (green) innovation and ownership, see e.g. Aghion et al.
(2005), Atanassov (2013), Borochin et al. (2020), Lambertini et al. (2017), and Nesta et al. (2014).
21 For summary statistics for the respective owner types, please refer to Table B.6.
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Table 2.5 : Patents split into transport and energy sectors

Sector Transport Energy

(1) (2) (3) (4)
Dep. var. Green patents Fossil patents Green patents Fossil patents

L.IO share 0.0104 -0.116 -0.0462 0.0352
(0.0599) (0.106) (0.0448) (0.0229)

L.Own stock gr. tr. 1.656∗∗∗ -0.198
(0.188) (0.379)

L.Own stock fo. tr. 0.169∗∗∗ 1.952∗∗∗

(0.0457) (0.224)
L.Green tr. spillover 0.308 -1.776

(1.016) (1.839)
L.Fossil tr. spillover -0.251 1.567

(0.940) (1.710)
L.Own stock gr. en. 1.561∗∗∗ 0.0978

(0.122) (0.0687)
L.Own stock fo. en. 0.193∗ 1.416∗∗∗

(0.109) (0.0889)
L.Green en. spillover -0.648 0.541

(0.715) (0.356)
L.Fossil en. spillover 0.645 -0.550

(0.721) (0.357)
L.R and D exp. 0.0497 0.584 0.331 -0.0237

(0.238) (0.434) (0.212) (0.110)
Observations 8622 8622 8622 8622

Notes: All columns: Poisson control function estimation (first stage not shown). Robust standard errors in
parentheses. Knowledge stocks, spillovers and R&D expenditures are in logs. Estimation period is 2009-2018.
All regressions include year fixed e�ects and firm fixed e�ects using the BGVRmethod. First stage of control
function not shown. Significance levels are indicated as ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

For governments, PRI signatories, and insurers and pension funds, onemight expect a par-

ticular interest in long-term investments and a preference for low transition risk. The results

for the three groups can be seen in columns 1-3. The coe�icient on government ownership

and PRI signatory ownership is large and positive (a one percentage point increase in PRI

signatory ownership is associated with 3 percent more green patents in the following year),

but insignificant. For insurance and pension fund companies, no significant influence on the

direction of innovation of their portfolio companies can be detected either; the coe�icient

even turns negative. This result may be due to the necessary aggregation of this investor type

(see section B.2 for details).

Domestic investors (column 4) are not necessarily more interested in climate issues, but may

have better capacities to engage in firms close to them. However, this ability is not reflected
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Table 2.6 : Special investor types and green patenting

(1) (2) (3) (4) (5)

L.Gov. share 0.0342
(0.0882)

L.PRI sig. share 0.0343
(0.0796)

L.Ins.& pens. fd. share -0.121
(0.298)

L.Domestic owner share -0.0210
(0.0505)

L.Big 3 share 0.0257
(0.0610)

Observations 8622 8622 8622 8622 8622

Notes: Dependent variable: Green patents. All columns: Poisson control function estimation (first stage not
shown). Robust standard errors in parentheses. Estimation period is 2009-2018. All regressions include year
fixed e�ects and firm fixed e�ects using the BGVRmethod. Further regressors not shown. Significance levels
are indicated as ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

in the results, where the coe�icient on domestic investors is insignificant and even negative.

Column 5 reports results with the share of the “Big Three” index fundmanagers (BlackRock,

Vanguard, and State Street) as the dependent variable. All of them have voiced concern about

climate risk.22 Given their limited ability to influence their risk via selection, the engagement

channel might be particularly important for them. Although the Big Three have been shown

to contribute to emission reductions of firms (Azar et al. 2020), the insignificant coe�icient

suggests that their engagement activities donot yet address technological risk in ameasurable

way.

In summary, the findings for all of these investor types are the same as for the aggregate: no

statistically significant e�ect of a larger ownership share of any particular investor type on

green or fossil patenting can be detected.

Some further specification alterations Tables B.8 and B.9 in Appendix B.5 show results

for some basic changes in the specification.

One could argue that institutional investors have a particular interest to direct innovation

towards high-quality green patenting. Despite focusing on patents which are ultimately

22 In fact, they are all PRI signatories, implying some overlap between the Big Three type and the PRI signatory
type.
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granted, patent counts may not capture patent quality su�iciently. As described in section

2.2, family size could be a useful measure in the context of this analysis: it captures the firm’s

expected commercial value of the patent, and it su�ers less from sample censoring than

citations. Columns 1 and 2 of Table B.8 show the impact of institutional ownership on the

family size of green and fossil patents, respectively. The coe�icients decrease in size and

remain insignificant. Owners’ concern with innovative quality does not seem to be the main

issue.

Another concern could be that the dichotomy of green and fossil technologies does not fully

capture climate-relevant innovation. There is also the interimcaseofgrey patents, whichmake

fossil technologiesmore e�icient and thus reduce emissions. It is possible that investors value

the (potentially) low cost and low risk character of these types of incremental innovations. As

column 3 in Table B.8 shows, this hypothesis is not supported by the data.

One of the main arguments why institutional owners can exert influence on firms is that their

large stakes implymore concentrated ownership. Itmight therefore only be the largest owners

that drive successful engagement. In columns 1 and 2 of Table B.9, the share of institutional

ownership is replaced by the share of the five largest owners. The coe�icient is negative in

both cases, and insignificant.

It is also possible that the influence of institutional investors takes longer to materialize

than one year.23 Columns 3 and 4 of Table B.9 therefore show results for a two-year lag of

institutional ownership, IOit−2. The coe�icient on green patenting gets larger compared to

the baseline, and the coe�icient on fossil patenting gets smaller, indicating that there might

be some truth in this argument; however, the coe�icients are still insignificant.

2.5.2 Institutional owners and total innovation

From the results presented so far, the interim conclusion is that there is no evidence of institu-

tional owners influencing the direction of innovation in firms. However, this lack of significant

e�ects on climate-related patenting might be due to specification or data issues that have

nothing to do with the green and fossil patents themselves. Can the data andmodel identify

any e�ect of institutional ownership on innovation? To answer this question, equation 2.3 is

estimated, covering all patents.

23 Atanassov (2013), for instance, uses a time lag of two years.
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Themain results from these regressions (omitting all explanatory variables except institutional

ownership from the table24) are presented in Table 2.7. In this case, institutional ownership

has a positive and significant e�ect on total innovation: A ten percentage point increase in

institutional ownership leads to 11.4%more patent filings. At the mean, this would mean a

shi� from 40.6 to 50.6% in institutional ownership resulting in an increase from 89.9 to 100.2

patents. Despite a di�erent model equation, this result is quite close to the findings in Aghion

et al. (2013), where the Poisson specification delivers coe�icients between 0.007 and 0.010.

It is surprisingly robust over a wide range of specifications. Column 1 shows the baseline

Poisson control function regression of equation 2.3, which is comparable to the estimations

in Tables 2.4 and 2.5. Column 2 introduces two-way clustering of standard errors at the 4-digit

NACE code and country level.

In column 3, an additional control variable is introduced: Tobin’s q, a measure of the market’s

future expectations deviating from current fundamentals. It could bias the results, since it

might be correlated with patents as well as institutional ownership. However, controlling for

Tobin’s q hardly changes the coe�icient on institutional ownership; as shown in Table B.12,

the coe�icient on Tobin’s q is also insignificant.

In columns 4 and 5, robustness with respect to the choice of patent count measure is tested.

Column4uses family-weightedpatents inall patent variables, andcolumn5uses citations. The

citation-based regression is the only onewithout a significant e�ect of institutional ownership.

As explained in section 2.2, citations su�er particularly from sample attrition due to the time

line of the patenting and citation process. Also, the number of citations can be zero, which

leads to an excessive amount of zeroes especially towards the end of the sample (whereas the

family size of each patent is always at least 1, the patent itself). Finally, column 6 changes the

estimation model from Poisson to negative binomial, which is sometimes recommended in

case of overdispersion of the data.25 The coe�icient on institutional ownership gets smaller,

but is still significant.

From Table 2.7, we can conclude that a connection between institutional ownership and

innovation can be establishedwith the given data andmodel. Looking at the combined results

on carbon-relevant and total patenting, investors appear to encourage overall innovation,

24 The complete results are available in Appendix B.5, Table B.12.
25 Note that the GMM-based ivpoisson estimator implemented in Stata works for any exponential model with
multiplicative error and is robust to overdispersion. The negative binomial estimator, on the other hand, is less
robust to misspecification.
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Table 2.7 : Institutional investors and total patents

(1) (2) (3) (4) (5) (6)
Model Poisson Poisson Poisson Poisson Poisson Neg. bin.
Dep. var. Patents Patents Patents Family size Citations Patents

L.IO share 0.0114∗∗∗ 0.0114∗∗ 0.0110∗ 0.0129∗∗ -0.0258 0.00671∗∗

(0.00348) (0.00481) (0.00603) (0.00624) (0.0177) (0.00310)
Clustered SEs no yes yes yes yes yes
Add. control no no yes no no no
Observations 8622 8622 8040 8622 8622 8622

Notes: All estimations use a control function approach (first stage not shown). “Add. control” refers to the
inclusion of Tobin’s q as an additional control variable. Robust standard errors in parentheses. In the Poisson
control function estimations starting in column 2, standard errors are two-way clustered at the 4-digit NACE
code and country level. In the negative binomial control function estimation, standard errors are clustered
at the 4-digit NACE code level. Knowledge stocks, spillovers and R&D expenditures are in logs. Estimation
period is 2009-2018. All regressions include further controls, year fixed e�ects, and firm fixed e�ects using
the BGVRmethod. Significance levels are indicated as ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

while not exerting any influence on climate-relevant innovation. However, the estimates on

total patenting may simply be more precise because of higher counts of total patents in the

data. As can be seen in the summary statistics in Table 2.3, climate-relevant patents account

for only about 6% of the patents in the sample (which, notably, is a sample of companies

which have filed at least one green or fossil patent during the sample period).

2.5.3 Climate exposure and climate-relevant innovation

This section presents results for testing Equation 2.4, including climate exposure as an ex-

planatory variable. This specification is a check for statistical power in the dependent variable,

looking for any measurable influence between patents and a variable that is not directly

innovation-related. It also helps to find out whether firm-specific concerns with climate issues

explain green or fossil patenting.

As described in detail in section 2.3.5, the Sautner et al. (2020a) dataset measures di�erent

types of “climate exposure” at firm level based on transcripts of firms’ quarterly earnings

conference calls with investors. The data reflect both managers’ and investors’ awareness

of these issues. “Climate exposure” can be understood as “exposure to a climate-related

shock” specific to the firm. The general “climate exposure” variable can refer to any climate-

related shock. The Sautner et al. (2020a) dataset also o�ers more specific indicators, which

are of interest here: “Regulatory exposure” reflects the discussion of climate policies a�ecting
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the firm; “opportunity exposure” reflects the discussion of opportunities the firm faces in

conjunction with climate issues. Sautner et al. (2020b) show that both of these measures are

correlatedwith other available indicators for climate regulation at country or firm level. Aghion

et al. (2016) find a clear relationship between policy-driven fuel prices and a redirection of

innovation away fromdirty and into clean technologies. Wewould expect regulatory exposure

to have a similar e�ect.

Table 2.8 : Climate exposure and carbon-relevant patenting

(1) (2) (3) (4) (5) (6)
Dep. var. Green

patents
Green
patents

Green
patents

Fossil
patents

Fossil
patents

Fossil
patents

L.IO share -0.00790 -0.000916 -0.0126 0.00964 0.00749 0.00927
(0.0266) (0.0268) (0.0274) (0.0220) (0.0234) (0.0228)

L.CC Exposure 0.0617∗∗ -0.0188
(0.0301) (0.0203)

L.CC Regulatory Exp. -0.0893 -0.00158
(0.454) (0.156)

L.CC Opportunity Exp. 0.134∗∗∗ -0.0249
(0.0471) (0.0346)

L.Own stock fossil 0.0638 0.0640 0.0652 1.364∗∗∗ 1.337∗∗∗ 1.346∗∗∗

(0.0645) (0.0524) (0.0683) (0.117) (0.113) (0.120)
L.Own stock green 1.443∗∗∗ 1.498∗∗∗ 1.424∗∗∗ 0.0256 0.00423 0.0235

(0.106) (0.114) (0.111) (0.117) (0.132) (0.125)
L.Green spillover -0.147 -0.0359 -0.190 0.0631 0.0502 0.0679

(0.288) (0.293) (0.297) (0.219) (0.236) (0.227)
L.Fossil spillover 0.183 0.0384 0.246 -0.0656 -0.0439 -0.0683

(0.354) (0.362) (0.365) (0.284) (0.306) (0.296)
L.R and D exp. 0.165∗∗∗ 0.110∗∗∗ 0.175∗∗∗ 0.118∗∗∗ 0.132∗∗∗ 0.125∗∗∗

(0.0348) (0.0314) (0.0389) (0.0456) (0.0452) (0.0467)
Observations 3972 3972 3972 3972 3972 3972

Notes: All estimations: Poisson control function estimation (first stage not shown). Robust standard errors in
parentheses, two-way clustered at the 4-digit NACE code and country level. Estimation period is 2009-2018.
All regressions include year fixed e�ects and firm fixed e�ects using the BGVRmethod. Significance levels are
indicated as ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table2.8 shows thee�ectsofdi�erentmeasuresof climatechangeexposureongreen (columns

1-3) and fossil (columns 4-6) patenting.26 Overall climate change exposure is significantly

positively associated with green patenting. Exposure to regulatory shocks, however, does not

have any significant impact on green or fossil patenting. Regulatory exposure as measured

by Sautner et al. (2020a) di�ers from policy exposure as measured by fuel prices (Aghion
26 The inclusion of the climate change exposure measures significantly reduces sample size. For the sake of
completeness, Table B.13 reproduces the baseline results (comparable to Table 2.4) for the reduced sample.
Table B.7 reports summary statistics for the reduced sample.
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et al. 2016) in one key aspect: Fuel prices are measures of existing climate policies. They are

observable, and firms can easily build expectations regarding future fuel prices (at least the tax

component of it) based on past fuel prices. This is what might make lagged fuel prices a good

predictor of green patenting.27 The regulatory climate change exposure measure probably

reflects more long-term expectations voiced by investors. In line with the insignificant results

on institutional owner shares, it seems that the concerns about expected regulation do not

(yet) translate into a change in the direction of innovation within firms.28

Exposure to opportunity shocks, on the other hand, is significantly positively associated with

green patenting. According to these results, a one standard deviation increase in climate

opportunity exposure leads to a staggering 25% increase in green patents (0.134*1.887). As

shown in Table 2.2, the top bigrams for opportunity and overall exposure are very similar,

indicating that the frequency of opportunity-related keywords is driving the results for overall

climate change exposure.

Given the way in which the “climate change opportunity” measure is constructed, it is di�icult

to interpret the e�ect as causal. The question is what “exposure to opportunity shocks” actu-

ally means. Only very few of the underlying bigrams relate to opportunity-creating policies,

which would reflect an exogenous opportunity shock. Looking at the bigrams, it is possi-

ble that investors are makingmanagement aware of green opportunities in a more general

sense, and push for more innovation. It is, however, also likely that managers mention par-

ticular green R&D successes in earnings conference calls – resulting in high “climate change

opportunity” measures –, which are followed by green patent applications in the next year.

Therefore, the results from table 2.8 suggest that “climate change opportunity exposure” is a

good predictor of green patenting activity, but not necessarily reflecting a causal relationship.

Nevertheless, the clear results on climate change opportunity exposure (with the expected

sign) indicate that the patent data exhibit su�icient variation over time to detect e�ects of

firm-specific characteristics related to climate risk and institutional ownership. This is an

indication that the nonsignificant results can be interpreted as “no e�ect”. In this light, it is

interesting that fossil patenting is not a�ected by any climate-related exposure. There is no

27 The fact that tax-driven fuel price changes can lead to larger fuel demand changes is an established result in
the literature on environmental and energy economics, see e.g. Li et al. (2014) and L. W. Davis and Kilian (2011).
It is usually attributed to the predictability of the tax component.
28 Regressions using the second lag of regulatory exposure yield insignificant coe�icients as well. Results are
available upon request.
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evidence that green technologies crowd out fossil ones, or that technological risk is addressed

by actively moving out of fossil technologies.

2.6 Conclusion

The tightening of climate policies entails transition risk not only for fossil fuel producers and

emitters, but also for innovators in related technologies: their knowledge is at risk of losing

value due to climate policy. This translates into a risk for investors of the a�ected technology

firms. This paper explores whether institutional investors have recognized this risk, and

whether their engagement directs firms’ innovation into green technologies.

The analysis draws on the growing literature on the role of institutional investors in equity

markets.Via direct conversations and voting in shareholder meetings, large asset managers

and funds can influence the behavior of firms (Appel et al. 2016, 2018; Dimson et al. 2015) and

have been shown to encourage innovation (Aghion et al. 2013; Bushee 1998). The underlying

idea is that many institutional investors have amore long-term perspective than “myopic”

managers who are incentivized by short-term performance goals.

In this paper, I construct a worldwide firm-level panel on patents and institutional ownership.

A classification of patents into green and fossil technology categories is applied to measure

firm-specific technological knowledge and innovation. I then estimate a dynamic patent

count data model building on Aghion et al. (2016), where patenting depends on previous

knowledge, spillovers, R&D e�orts, and the share of institutional ownership. The endogeneity

of institutional ownership is addressed by a control function approach.

I find robust evidence for the positive influence of institutional ownership on overall patenting

activity. However, there is no evidence for any e�ect on fossil or green technologies, not even

for investors with long-term perspective or signatories of the UN Principles for Responsible

Investment (UN PRI). The results also hold when looking specifically at the transport sector,

where technological knowledge likely plays a larger role. These results are in contrast to previ-

ous studies which show a positive relationship between climate policy and green innovation

(Aghion et al. 2016), and between institutional ownership and environmental outcomes (Dyck

et al. 2019; Dimson et al. 2015; Azar et al. 2020). Institutional investors seem to perceive and

address technological risk di�erently from overall environmental or transition risks.
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To find out whether climate-relevant patenting can be explained by firm-specific climate-

related risks, I use a newly developed dataset on firm-level climate exposure (Sautner et al.

2020a). It is basedon firms’ conferencecallswith investorsandmeasures the relative frequency

atwhichclimate-related termsarementioned. I finda significantpositive relationshipbetween

“climate opportunity exposure” and subsequent green variation. I cannot ascertain that this is

a causal e�ect of an exogenous opportunity shock, e.g., green technology support schemes.

What the indicator rather seems to reflect is thatmanagers talk about green innovation activity

that is filed as a patent in the following year.

The results on climate exposure can be used to address another issue. If the insignificant

e�ects I find for institutional ownership just result from a dataset with insu�icient variation,

they do not have any informational value. The climate exposure results show that there is

su�icient statistical power in the data to detect a relationship between green patents and

a variable that is not directly related to innovation. The insignificant e�ect of institutional

ownership on green and fossil innovation can therefore likely be interpreted as a zero e�ect.

It is remarkable that neither institutional ownership, nor firm-specific regulatory or opportu-

nity shocks have any e�ect on fossil patenting. Moving out of fossil technology development

does not (yet) seem an answer to (expected) policies. Possibly, the use of fossil technolo-

gies still generates too much income today to be given up in favor of more future-oriented

technologies; neither investors nor regulation appear to generate su�icient pressure to draw

managers away from their “cash cows”. For the large, publicly listed firms which constitute

my sample, such a turnaroundmay be particularly di�icult.29

One reason for the missing influence of institutional ownership on fossil as well as green

technologies could be related to reputational concerns, or the lack thereof. “ESG risks” are

o�en reputation risks: a firm may be a�ected by negative headlines in case of oil spills or

worker protests, for example. Innovation is less visible. It is possible that investors’ main

concern is about reputational risk, and they are therefore less interested in the direction of

innovation.

29 In the management literature, we can find the idea that established companies focus more on incremental
improvements, whereas small start-ups create “disruptive innovation” (Christensen et al. 2015). As most green
innovations can still be regarded asmore “novel” (Dechezleprêtre et al. 2017), a typical strategy for an incumbent
firm would be to continue with their traditional business areas, and to acquire new-technology startups. In
future research, it would be interesting to see whether an increase in indirect green knowledge acquisition can
be observed in the data, and whether institutional investors support this.
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Policy uncertainty has been shown to reduce innovation (Bhattacharya et al. 2017) and could

be another explanation for the absence of an e�ect of institutional ownership on climate-

relevant patenting. With climate policy uncertainty, investors’ strategy might be to support

innovation in other fields rather than betting on green or fossil technologies. An important

next step in this line of research would be to examine events that reduce policy uncertainty

and the resulting market valuation of green and fossil patenting.

This also points to a related issue: the timing of this analysis. Event studies have shown that

the conclusion of the Paris Agreement changed investors’ expectations regarding climate

policy stringency (Ramelli et al. 2019; Kruse, Mohnen, and Sato 2020). Despite early actions

such as the launch of the UN PRI in 2006, investors may have only started to recognize and

address transition risk more recently. It is possible that too few years have passed since Paris

to detect an e�ect of institutional ownership on the direction of innovation – but repeating

the analysis in a couple of years may provide a di�erent picture.
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3 Economic E�ects of Regional Energy System
Transformations: An Application to the Bavarian
Oberland Region

3.1 Introduction

The lack of ambitious responses to climate change from the international community and from

national governmentsmotivates subnational entities to set their owngoals and formulate their

own plans towards the reductions of greenhouse gas emissions in their jurisdictions. From an

economics perspective, national unilateral e�orts (not to mention subnational unilateralism)

are by nomeans the first best response to a global problem. Yet, it is laudable that civil society

comes together and becomes active when they hold the view that they can domore. This is

the case of three districts in the Bavarian Oberland Region, who set themselves the target

to generate as much electricity and heat from renewable sources as they consume by the

year 2035. Since 2014, a research consortium has accompanied the region in identifying its

potential for renewables generation, the degree of acceptability of the di�erent technologies.

Based on this, possible scenarios were formulated for how the transformation path might

look like from now until 2035, and the economic e�ects were quantified.

As it is o�en the case in the policy debate, there is a strong interest from local decisionmakers

in the economic e�ects of the transition to an energy system based on renewable energies.

Thus, the purpose of this study is to analyze the e�ects of the di�erent energy transition

paths on regional value added and on employment, divided into three qualification levels:

low-skilled, medium-skilled, and high-skilled employment. This endeavor poses four main

challenges, whose solutions constitute our contributions to the literature. Our first andmost

important contribution lies in taking into account the scarcity of factors of production and of

financial resources needed to undertake the investments, giving rise to crowding out e�ects.

Related to that, our second contribution involves an extension of Fisher and Marshall (2011)

and Benz et al. (2014) aiming at satisfying the needs of a regional and energy economic

analysis. Third, we base the analysis on an input-output (IO) table where the energy sector is

disaggregated to better account for the specificities of each generation technology and its
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interconnections with the rest of the economy. Our fourth contribution consists in taking into

account the fact that the three districts are not economically isolated but interact with each

other and with other regions.

We find that the three districts on the Oberland region benefit from investments towards the

regional energy transition, both in terms of additional value added and employment. Yet, the

positive development comes at the expense of value added and employment in the rest of

the country. Moreover, our analysis shows that medium-skilled employment increases most

across all scenarios. In the light of the current shortage of medium-skilled labor in Germany

(Stippler et al. 2019), this finding represents an alarm signal that calls for integrating labor

market considerations into climate policy strategies.

Previous work on the economic impacts of (renewable) energy policy can be summarized in

three main strands: input-output analysis; ex-post econometric studies, focusing on specific

regions or policies; and more complex models or meta-studies. A number of o�en policy-

commissioned reports use standard input-output analysis, evaluating the additional demand

for products in other sectors due to the construction (and sometimes operation) of renewable

energy facilities (Bickel et al. 2009; Böhmer et al. 2015; Breitschopf et al. 2015; Hirschl et al.

2015; Höher et al. 2015; Lehr et al. 2015, 2011; Lutz et al. 2014; O’Sullivan et al. 2014; Ulrich

and Lehr 2014). Their contribution lies in the construction of a demand vector specific to

the installation (or operation) of di�erent renewable energy technologies. These studies

su�er from three limitations: first, they o�en focus on the construction of renewable energy

plants, therefore concentrating on a one-o� e�ect and neglecting the phase of operations,

in particular their structural e�ect changing the interlinkages and production structure in

the economy. Second, they disregard scarcity aspects: in these models, the demand created

due to renewables expansion is always additional and does not come at the expense of other

economic activities. Third, these studies do not take cross-country interlinkages into account,

ignoring the dimension of internationally traded intermediate and final goods. The same is

true for scholarly articles using an input-output approach, such as Allan et al. (2007) or Lehr

et al. (2008). Heindl and Voigt (2012) represent an exception with respect to the consideration

of crowding out e�ects, yet the interlinkages between countries and regions are not accounted

for in this study.

The second strand of literature concerned with the economic e�ects of renewables expansion

is econometric. For example, in an ex-post econometric exercise controlling for economic
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structure and other socio-economic variables, Brown et al. (2012) confirm the positive eco-

nomic and employment e�ects of wind power expansions found in input-output studies.

However, such econometric studies also mostly focus on one-o� e�ects induced by policies

(i.e., the e�ects of constructing or installing power equipment). In a recent analysis, Buchheim

et al. (2020) show that the employment e�ects of increased solar energy installations depend

on the tightness of the labormarket, the e�ects being larger when unemployment is high. The

authors conclude that crowding out is the most plausible explanation for small job e�ects.

This finding in an ex-post study further motivates our consideration of crowding out e�ects in

a forward-looking method.

More complex models such as CGE, PANTA RHEI or E3ME can take crowding-out e�ects as well

as international economic linkages into account (see, e.g., IRENA (2016b), the chapter on net

e�ects in Lehr et al. (2011), or the special issue of the Energy Journal on “Hybrid Modeling

of Energy-Environment Policies”). However, these models rely on a number of assumptions

made “in the background” and are not replicable without access to the computational model.

They are also usually not available at the regional level. Meta-studies have combined results

on job gains in renewable industries and job losses in conventional energy to estimate trade-

o�s (e.g., Meyer and Sommer 2014; Wei et al. 2010). The results of their spreadsheet models

are useful, but not replicable as they rely on the availability of previous studies.

Our approach consists in an IO analysis whichwe extend in several dimensions. The advantage

of IO analysis over othermethods that are commonly used to estimate the economic e�ects of

sectoral developments, like the analysis of value-added chains, lies in the ability to consider

indirect besides direct e�ects on other sectors. That means that if a sector faces an increased

demand for its goods, expanding production does not only increase demand for its direct

inputs, but also for the intermediate inputs used to produce these inputs and so on. This

can only be considered up to a limited extent in an analysis of the value-added chain, as

done in Hirschl et al. (2010, 2015). Thus, to be able to use an IO approach, we construct IO

tables for the three districts in the Bavarian Oberland following the method proposed by

Többen and Kronenberg (2015), based on the German IO table. It allows us to model trade

between the districts as well as with the rest of the country and the rest of the world, which is

important considering that the districts are open economies that interact with other regions.

Thus, the additional demand generated by investments (in renewable energies) is not satisfied

exclusively by the local economy but also by sectors outside of their borders. Ignoring this

would lead to a overestimation of the economic e�ects derived from the investments.
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One of the extensions of the traditional IO analysis, which also allows us to rule out further

sources of overestimationof the economic e�ects, is considering scarcity of financial resources

andproduction factors. Wedistinguishbetween investments byprivate households and invest-

ments by institutional investors. Moreover, we di�erentiate between the investment and the

operation phase. In the case of private households, investments (in renewables, renovations

and storage capacity) and the corresponding expenditures during the operation phase crowd

out consumption in the same amount.1 Similarly, investments by institutional investors crowd

out alternative investments. This distinction allows us to take into consideration the di�er-

ent structure of these two final demand components (consumption by private households

and investments by private organizations) and, thus, to explicitly consider the increasingly

important role of private households as investors in the electricity and heating sectors.

For the operations phase, we take into account that the investments increase the capital stock

of the concerned sectors. Assuming full employment of the factors of production and fixed

factor input coe�icients, the increased capital attracts labor from other sectors, reducing

their production. For the analysis of the economic e�ects in the operations phase we further

develop the approaches of Fisher and Marshall (2011) and Benz et al. (2014) to make them

applicable in a context when small regions (which in our case are the three German districts)

are embedded in a systemwith much larger regions such as the rest of the country and the

rest of the world.

An important characteristic of our analysis is that it is made prior to the investments, allowing

to take measures targeted at attenuating possible negative developments. For instance,

the identification of sectors that might be negatively a�ectedmakes it possible to support

them in the appropriate manner before or during the transition. Moreover, identifying the

sectors where labor requirements might increase most strongly allows a proactive approach

to prevent and solve shortage problems.

The contributions of this paper do not only refer to the three districts in the Bavarian Oberland

region. On the contrary, they can be applied to other regions, either at the same or other

levels of regional sub-division, and also to other research and policy questions. Thus, the

methodology, which was further developed to satisfy the needs of a regional analysis, is by no

means exclusive to investments in the energy sector or to the Oberland region. Following the

1 This can be seen as a simple representation of a policy instrument financed by a surcharge on the electricity
price for all consumers, as in the German Renewable Energy Law (EEG).

76



3 Economic E�ects of Regional Energy System Transformations

method described in Section 3.2.2, we can construct IO tables for other subnational regions.

Themethod described in Section 3.2.3 can be applied to analyze the economic e�ects of all

types of investments.

In the following sections, we first outline our approach to produce the multi-regional IO

table, to disaggregate the energy sector, and to assess the e�ects of the energy transition.

Section 3.3 describes the data sources and Section 3.4 presents the e�ects on value added

and employment. Finally, Section 3.5 concludes.

3.2 Methodology

For the analysis of the e�ects of the energy transition we want to consider the impact on the

whole regional economy, taking into account the direct and indirect e�ects. Thus we rely

on input-output analysis for the assessment. This confronts us with three methodological

challenges. First, since subnational tables are not available in Germany, we are required

to produce IO tables for each of the districts and link them to each other and to the tables

for the rest of Germany and the rest of the world. This requires estimating trade between

the three districts of analysis but also of each of the districts with the other two regions.

Second, the energy sector of the multi-regional IO table needs to be disaggregated in such

a way that the di�erent renewable energy technologies and conventional technologies are

considered as individual sectors. This disaggregation is necessary to account for the di�erent

input structures and, therefore, for the specific interconnections of each technology with the

rest of the economy. The third challenge is concerned with the calculation of the economic

e�ects. In this respect, we extend the traditional IO analysis to consider scarcities of financial

resources and production factors and, therefore, to account for the fact that investments in

renewables energies crowd out other investments and production in other sectors. In the

following, we describe howwe address each of these challenges.

3.2.1 Disaggregation of the energy sector

We start by disaggregating the energy sector in both source IO tables: the tables for Germany

and the rest of the world from the World Input-Output Database (WIOD) (Timmer et al. 2015)

and theGerman input-output table (GIOT) fromtheGermanstatistical o�ice. Thus, for instance,

the sector “Electricity, steamandhotwater, production anddistribution services thereof” from
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the GIOT is disaggregated into nine subsectors.2 These consists of di�erent renewable and

conventional technologies, transmission and distribution of electricity.3 For disaggregation,

we use the information contained in the IO table for Germany from EXIOBASE 2 (Wood et al.

2015), where the energy sector is disaggregated.4

Table 3.1 : Disaggregation of the intersectoral transactions of the energy sector

Coal Solar Distribution

Sector 1 … Sector j Sector h … Sector H … Sector J

Total 

intermediate 

Use

Sector 1 z11 … z1j z1h … z1H … z1J z1.

… … … … … … … …

Sector i zi1 … zij zih ziH … …

Coal Sector e ze1 … zej zeh … zeH … zeJ ze.

Electricity

E
le

ct
ri

ci
ty

Solar … …

…

…

…

…

…

… …

E
le

ct
ri

ci
ty

Distribution Sector E zE1 … zEj zEh … zEH … zEJ zE.

… … … … … … … …

Sector I zII … … zIh … zIH … zIJ

Total inputs z.1 z.h … z.H

E
le

ct
ri

ci
ty

To arrive at a matrix like in Table 3.1, we need to calculate the elements in the shaded areas,

where zih represents the input from the non-electricity sector i required in the electricity

subsector h, and zej represents the input from the electricity subsector e required in sector j.

Thus, to calculate zih we scale the input from i required in the (only) electricity sector from

2 For simplicity, in the followingwewill refer to the “Electricity, steamandhotwater, production anddistribution
services thereof” sector as the electricity sector, although it also includes activities di�erent to electricity
generation.
3 For a complete list of the energy sectors see Table C.1 in Appendix C.1 (Sectors 10-18).
4 Note that we first need to aggregate the sectors in the EXIOBASE table and in the GIOT to be consistent with
our final sector aggregation, described in Table C.1.
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the GIOT, zGIOTih :

zih = zGIOTih

zExioih∑
h z

Exio
ih

∀ i 6= e, (3.1)

where
∑

h z
Exio
ih is the sum of interindustry sales of sector i to all electricity sectors. The

superscriptsGIOT andExio indicate that the variables are obtained from the German IO

table from the German statistical o�ice and from the German EXIOBASE table, respectively.

Accordingly, we calculate zej as

zej = zGIOTej

zExioej∑
e z

Exio
ej

∀ j 6= h. (3.2)

To calculate the entries of the intersectoral transactions between the energy subsectors (i.e.,

in the darker area in Table 3.1) we need to proceed slightly di�erently:

zeh = zGIOTeh

zExioeh∑
e

∑
h z

Exio
eh

, (3.3)

where zeh is the input from the electricity subsector e required in the electricity subsector h.

The remaining components of the IO table for the electricity subsectors, that is, value added,

output, imports of similar final goods, thedi�erent components of final demand (consumption

of private households, consumption of private organizations, consumption of state organiza-

tions, investment and changes in stocks, exports), as well as total final demand are calculated

in a similar manner. For instance, for value added,we, we scalewGIOTh bymultiplying it with

the share ofwExioh in total value added of all electricity subsectors,
∑

hw
Exio
h .

3.2.2 Construction of themulti-regional IO table

The goal of the process described in this section is creating amulti-regional IO table consisting

of the IO tables of Miesbach (MB), Bad Tölz-Wolfratshausen (BW), and Weilheim-Schongau

(WS) (together, the Oberland region5), the rest of Germany and the rest of the world. Their

“internal” IO tables are on the main diagonal of the multi-regional matrix; the intermediates

traded interregionally are in the o�-diagonal parts.

5 To be precise, the district Garmisch-Partenkirchen is also part of the administrative Oberland region, but did
not take part in the INOLA research project. For simplicity, we use the terms “Oberland region” and “INOLA
region” interchangeably.
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The construction of the multi-regional matrix follows four major steps. First, we construct

regional IO tables by adjusting theGermancoe�icientswith regional output figures and scaling

numbers for final goods use. In a second stepwe employ themodified “cross-hauling adjusted

regionalization method” (CHARM) approach developed by Többen and Kronenberg (2015) to

estimate each district’s sectoral trade flows with the rest of Germany and with the rest of the

world. Applying a simple gravity approach in a third step, wemodel the multi-regional trade

flows: sectoral trade flows between the districts and between each district and non-Oberland

Germany. Finally, using the “proportionality assumption”, we create the multi-regional IO

(MRIO) matrix by combining the data on sectoral trade flows and input coe�icients. So, the

first and the last step are concerned with input-output tables. There we assume that the

production technology in the districts is equal to Germany’s production technology. The inner

two steps are about estimating inner-country trade flows.

Note that the regions we are interested in (the Oberland region) do not sum up to the national

level. We index our districts by b,m, and w and denote the national totals by n. From the

perspective of each district r, the rest of the country is denoted by q, such that, e.g., output is

xi,r + xi,q = xi,n. Similarly, if we look at all three districts together and the respective rest of

the country, this is denoted by roc (the rest of the country, or “non-Oberland region”). The set

G comprises these sub-regions and the rest: g = b,m,w, roc.

Construction of regional IO tables

Gross value added We start with regional data on gross value added, as this measure is the

closest proxy to output that is available from administrative sources. Since regional value

added data is only available at a highly aggregated sectoral level, we disaggregate the data

using employment figures.6 First, we compute preliminary figures for disaggregated value

added,wpi,r, by multiplying with the labor shares of the disaggregated sectors:

wpi,r = wa,r ·
Li,r
La,r
· wi,n/Li,n
wa,n/La,n

, (3.4)

where the subscript a stands for the aggregated sector containing sector i. The third term

on the right hand side (RHS) captures the national productivity di�erences. It is used as a

correction factor to account for potential di�erences in labor productivity across subsectors.

6 Table C.2 provides an overview of the highly aggregated sector level and the comprised sectors.
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In a second step, we scale the preliminary values so they match the totals of the aggregated

sectors:

wi,r = wpi,r ·
wa,r∑
i∈aw

p
i,r

. (3.5)

Regional output of non-energy sectors From the sectoral values on regionalw, we com-

pute output by scaling national sectoral output using regional to nationalw shares:

xi,r = xi,n ·
wi,r
wi,n

, (3.6)

where x denotes output of intermediate and final goods.

The output values of the rest of the country can be calculated as a residual:

xroci = xi,n −
∑
r

xi,r. (3.7)

Regional output of the energy sectors To take advantage of the fact that we have detailed

information on the energy sectors in the region, we proceed di�erently when regionalizing

these sectors. For each of the electricity and heat generation sectors we scale German output

down to the district level by multiplying it with the ratio of generation (in GWh) in the district,

gi,r to generation in Germany, gi,n per sector:

xi,r = xi,n ·
gi,r
gi,n

. (3.8)

The scaling factor for regionalization of the “Transmission of electricity” and “Distribution

and trade of electricity” sectors is based on the length of the transmission or the distribution

network located in the region and in the whole of Germany.

Regional input-output matrix For the (technical) regional IOmatrix capturing the use of

intermediates, wemultiply the input-output coe�icients of the German IO table (cij,n) with

the regional output values, assuming identical production technology at the national and
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regional level:

zij,r = xj,r · cij,n, (3.9)

where zij,r denotes the input from sector i required in region r’s sector j.

Note that each of the regional matrices constructed in this way is “technical” in the sense that

it doesn’t distinguish between sources of intermediates. It simply states that in a region r and

sector j, a certain amount of inputs from other sectors i is needed to produce this region’s

sectoral output. It does notmake a statement onwhere these inputs come from. The technical

regional input-output matrix derived here is used later on to construct the interregional and

intraregional IO matrices.

Regional domestic final use Final goods use per sector and use item is only available at

the national level.7 We therefore need to scale it using Bavarian data on total final goods use,

and regional data on disposable income in the case of household consumption.

For private household consumption, we start from the national sectoral value and scale it by

Bavarian consumption shares, aswell as regional disposable income in comparison to Bavaria:

dphi,r = dphi,n ·
dpby
dpn
· dir
diby

, (3.10)

with dph denoting consumption (final demand) of private households, dp denoting total private

consumption, di denoting disposable income, and by denoting Bavaria.

For investment and consumption by private and state organizations, we again scale by Bavar-

ian shares following Heindl and Voigt (2012) and then use regional GDP to scale to regional

level:

dki,r = dki,n ·
dkby
dkn
· GDPr
GDPby

∀ k 6= cs. (3.11)

7 For simplicity we refer to the di�erent final use items of the IO table as follows:
“Final consumption expenditure by households”= private household consumption;
“Final consumption expenditure by non-profit organizations serving households”= consumption of private
organizations;
“Final consumption expenditure by government”= consumption of state organizations;
“Gross fixed capital formation”= investments;
“Changes in inventories and valuables”= changes in stocks.
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The index k = cpo, cso, inv, cs denotes consumption of private organizations, consumption

of state organizations, investments, and changes in stocks. We scale down changes in stocks

using the regional GDP share only.

Regional (domestic) total use By summing up intermediate use and domestic final use

(by private households, denoted by ph, and organizations, denoted by k) we can derive total

regional domestic use dti,r:

dti,r = zi·,r + dphi,r +
∑
k

dki,r = zi·,r + di,r. (3.12)

Restof country The values for intermediate use, domestic final use, value addedandoutput

for the rest of the country are calculated as residuals, subtracting the values for the three

districts from the national figures.

Estimation of interregional trade: modified CHARM

As noted by Kronenberg (2009), trade of regions with the rest of the country and the rest of the

world is characterized by surplus imports and exports (trade balance) as well as substantial

amounts of cross-hauling, which is the simultaneous imports and exports of goods or services

of the same sector. The more heterogeneous the products within a sector are, the more

cross-hauling takes place (Kronenberg 2009).

The adjusted CHARM as suggested by Többen and Kronenberg (2015) allows to estimate trade

flows between each region and the rest of the country (“biregional trade”), as well as between

each region and abroad, while taking into account cross hauling. An important assumption

made in Kronenberg’s CHARM and of themodified CHARM is that product heterogeneity in the

region is the same as in the country, which is based on the argument that heterogeneity is a

characteristic of the commodity and not of the geographical location (Kronenberg 2009). This

assumption is criticized by Jackson (2014) who emphasizes that the product mix within an

aggregate commodity might well be a function of the geographical location, since the region

might not produce all commodity sub-types while the country does.

The consequences of this assumption will depend on three aspects: First, the level of aggrega-

tion in the commodities classification; second, the unique character of di�erent commodities;
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and third, the economic size of the subnational regions. Since our regions are rather small and

we have a high level of aggregation, there are potentially consequences for regionalization in

our framework. However, the lack of administrative data on trade between the districts and

with the rest of the country and the world makes it impossible to quantify the consequences.

Thus, we have to keep in mind that the estimates for the interregional transactions might be

inaccurate.

Estimating regional foreign trade As a first step, we estimate each region’s foreign trade.

The basic assumptions are that foreign imports are proportional to domestic demand, and

foreign exports are proportional to domestic output. Then regional foreign exports (denoted

by efi,r) and imports (denoted bym
f
i,r) can be approximated as

mf
i,r = mi,n

zi·,r + di,r
zi·,n + di,n

, (3.13)

efi,r = ei,n
xi,r
xi,n

. (3.14)

We use foreign trade data from the German IO table and scale it with regional demand or

supply figures, respectively. Foreign imports and exports for the rest of the country roc are

calculated as a residual.

Estimating total interregional trade The second step is concerned with estimating trade

within the country, between regions. The adjusted CHARM formula onlyworks for a bi-regional

setting. Therefore, we calculate cross-hauling between each of the districts and, from its

perspective, the rest of the country, as suggested by Többen and Kronenberg (2015). These

biregional values are what we refer to as “interregional”.

The adjusted CHARM defines the cross-hauling potential as the minimum of output and

domestic use. The intuition behind this is that the highest possible amount of cross-hauling

occurs if the region with relatively small output figures exports all its output, and imports the

same amount of goods. The (maximum) cross-hauling potential, qi is then twice the amount

of the region’s output.
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Correspondingly, the method defines the cross-hauling potential at national level to be con-

strained asmax qi,n = 2 min(xi; zi· + di).8 Then the national product heterogeneity measure

is calculated as

hi,n =
qi,n

2 min(xi,n; zi·,n + di,n)
. (3.15)

Following the above reasoning and in order to ensure accounting balances between the two

regions, the adjusted CHARM sets upper limits for the cross-hauling potential. Denoting the

cross-hauling in interregional tradebetween regions r and q by qi, theirmaximumCHpotential

can be written as

max(
qi
2

) = min(xi,r − efi,r; zi·,r + di,r −mf
i,r;xi,q − e

f
i,q; zi·,q + di,q −mf

i,q). (3.16)

Assuming that hi,n = hi,r, biregional cross-hauling can be estimated as the national hetero-

geneity parameter (which is the share of national cross-hauling in national cross-hauling

potential) times the regional cross-hauling potential:

qi = 2hi,r min(xi,r − efi,r; zi·,r + di,r −mf
i,r;xi,q − e

f
i,q). (3.17)

In a further step we calculate interregional gross trade flows, which are interregional gross

exports and imports and are defined bilaterally: trq is the trade flow from region r to region q.

To calculate them, we need to combine our estimate of cross-hauling with the commodity

balance. The commodity balance, b, is usually defined as the di�erence between regional

supply and demand (resulting in a value for net regional imports or exports), and in the

subnational case it needs to be corrected for foreign imports and exports:

bi,r = −bi,q = (xi,r − efi,r)− (zi·,r + di,r −mf
i,r). (3.18)

8 Note that, since there is a large quantity of variables and parameters to be estimated in the regionalization of
the IO table and calculation of the economic e�ects, some letters are used twice: once to denote a variable and
once to denote an index. While this is not optimal, please note that there is no implicit relation between the
index and the variable, although they are denoted by the same letter.
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Then, the gross trade flows between the two sub-regions are given by9

ti,rq =
qi + |bi,r|+ bi,r

2
, (3.19)

ti,qr =
qi + |bi,q|+ bi,q

2
. (3.20)

Estimation of multi-regional trade: gravity

As we have more than two regions in our setting, we need to distribute the interregional

(or biregional) trade flows calculated above among the several regions. We apply a simple

gravity framework for this: we assume that trade between sub-regions is proportional to their

economic size and their distance from each other. Moreover, we estimate the trade share ts of

one region with another as the quotient of estimated trade flows between regions r and s and

the estimated trade flows of region r with all other regions:

ts1rs =
ln(GDPrGDPs)− ln(distrs)∑

u6=r(ln(GDPrGDPu)− ln(distru))
. (3.21)

The denominator is similar to the “multilateral resistance” term in gravity trade models.10

Here, u is an index over all districts other than r - so it refers to the rest of the country from

r’s perspective. It is similar to the index q as in the notation for the modified CHARM formula

further above, but in the trade share calculations we actually use data on each of the 380

other German districts individually. Therefore, we use another index here to avoid confusion.

Note that we could also have a denominator based on region s’s multilateral trade. Essentially,

we can follow two approaches, which result in di�erent trade shares. The first is to use r’s

trade share for estimating all of r’s exports, which means that each region s’s imports from

r are scaled by r’s multilateral resistance. The second approach is to use s’s trade share for

estimating all of s’s imports, which means that r’s exports to s are scaled by s’s multilateral

resistance.

9 Note that we need to divide cross hauling by 2 because we are interested in one-directional flows from r to q,
whereas cross-hauling gives the sum of simultaneous imports and exports.
10 The specification in (3.21) implies trade elasticities of one with respect to GDP and distance.
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Approach 2 reads:

ts2rs =
ln(GDPrGDPs)− ln(distrs)∑

u6=s(ln(GDPsGDPu)− ln(distsu))
. (3.22)

Combining the multi-regional trade share with interregional trade flows gives the multi-

regional trade flows (shown here according to approach 1):

t1i,rs = ti,rq · ts1rs. (3.23)

Trade between each district and the non-INOLA region is calculated as a residual. So, for

instance for district b

tb,roc = tbq − tbm − tbw, (3.24)

where q denotes the rest of the country from the perspective of the exporting district, andm

andw denote the other two Oberland districts.

Since both approaches for the calculation of the districts’ trade flows lead to di�erent esti-

mates, we chose to combine the two approaches. To guarantee that the calculation for the

rest of the country in (3.24) does not deliver negative values, we always use the smaller of the

two:

ti,rs = min(t1i,rs; t
2
i,rs). (3.25)

Construction of themulti-regional IOmatrix

Imported intermediates: proportionality assumption To construct theMRIOmatrix from

the technical IOmatrix and themulti-regional trade flows, we use the proportionality assump-

tion also used by Benz et al. (2014) among others. According to this assumptions “an industry

uses an import of a particular product in proportion to its total use of that product” (OECD

2002, p. 12). For example, if the motor vehicles industry in region A uses steel in production

and 10% of all steel is imported from a particular region B, then 10% of the steel used by the

motor vehicles industry in region A is imported from region B.
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So the intermediate inputs used by region r’s sector i from region s’s sector j read as

zij,sr = zij,r
tj,sr
dtj,r

, (3.26)

where dtj,r denotes total use of product j in region r. In a similar manner, we calculate the

intermediate inputs used by region r’s sector i from sector j of the rest of the world (ROW),

using the foreign importsmf
i,r calculated above and the proportionality assumption, and

denote them zrowij,r .

Intersectoral transactions within each district We then calculate the within-district IO

matrix as the residual of the “technical” matrix calculated above, and all imported intermedi-

ates from the other districts, the rest of the country and the rest of the world

zij,rr = zij,r −
∑
s6=r

zij,s − zij,rowr. (3.27)

Linking the regional and German tables to the rest of the world Having the MRIO table

for the districts and the rest of the country, we proceed to link it to the rest of the world.

We aggregate the individual countries of the WIOD table (except Germany) to form the ROW

region and the sectors to match the sectors of the IO tables for the districts. Aggregated WIOD

tables are taken as the base table. We then disaggregate the intersectoral transaction within

Germany from the WIOD table, zWIOD
ij,n using origin-destination shares that can be calculated

from the MRIO table generated using the methodology described above:

zij,rs = zWIOD
ij,n

zGIOTij,rs∑
r

∑
s z

GIOT
ij

, (3.28)

where the superscript GIOT denotes the variables that were calculated above using the

German IO table from the German statistical o�ice. The intersectoral transactions between

German sectors and ROW’s sectors are regionalized in proportion to output, that is: zij,rrow =

zWIOD
ij,nrow

xGIOT
i,r

xGIOT
i,n

.
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Factors of production

Starting from the production factor figures for Germany, we scale down the respective factor

to the district level using the sectoral factor coe�icients for Germany and sectoral output for

the districts. For instance, we computeKir, the capital stock in region r’s sector i, as

Kir = Kin
xi,r
xi,n

, (3.29)

whereKin denotes the sectoral capital stock for the whole of Germany. The factors of produc-

tion for the rest of the world are calculated in a similar way.

3.2.3 Economic e�ects: extended IO analysis

Being placed in an IO framework, we implicitly assume a Leontief production function with

fixed input coe�icients and constant returns to scale. Furthermore, although the period of

analysis is relatively long (from 2015 to 2035), we also need to make the assumption that the

input coe�icients and factors coe�icients will stay the same throughout the period of analysis,

that is, the production technology of the economy will remain unchanged. This assumption

becomes more realistic for other possible applications with shorter periods of analysis.

For the assessment, we consider both the one-o� e�ects of the investment (or construction)

phase aswell as the e�ects of the operations phase. Importantly, we take into account scarcity

of financial resources and of the factors of production, thus in the investment and in the

operation phase crowding out of other activities occurs. Specifically, investments in the

energy transition crowd out other investments by companies or consumption by private

households. Here we assume that financial resources do not only come from the region where

investments take place but also from other regions. The rationale behind this assumption

is that investments in the energy transition are typically financed by national climate policy

instruments that redistribute funds from the whole of the country to the actual investment

location.11 Similarly, in the operations phase factors of production that could be employed

otherwise, are used in the operation andmaintenance of renewables, reducing their activity

(and therefore output) in other sectors.

11 An example for such a redistribution mechanism is the German EEG which finances the investments via a
surcharge on the electricity price paid by all consumers (with some exceptions). In the case where policies are
financed by the national public budget, redistribution occurs through the tax system.
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The next subsections describe our methodology. First, we introduce the general method

to compute the amount of output necessary to meet the additional investment demand

generated by the energy transition. We then present the method to consider scarcities in the

investment phase and the operation phase. Finally, we show howwe calculate the e�ects on

value added and employment, starting from the additional output figures.

Additional output

The starting point of our analysis are the future investments in renewable energies for elec-

tricity and heat generation, energy e�iciency measures and electricity storage appliances.12

We denote these by f , which is aN × 1 column vector, whereN is the total number of sectors

per region. The vector f describes how total demand for investment goods is composed of

investment goods from other specific sectors, thus it breaks down the overall investment

in region r into the components needed from each sector i. Note that this vector does not

provide information on the geographical origin of the components yet, thus we use the intra-

sectoral transactions in intermediates from theMRIO table as a proxy to distribute the sectoral

investment demand among the regions and obtain the additional investment demand:

∆dinv = Uf . (3.30)

where dinv is anNR×1 column vector, andR is the total number of regions.U is aNR×NR
matrix whose elements, uij,rs, describe the share of zij,rs (i.e., of inputs from region r’s sector

i used in regions s’s sector j), in the intrasectoral transactions:

uij,rs =
zij,rs∑R

r=1

∑R
s=1 zij,rs

∀ i = 1, . . . , N and j = i. (3.31)

12 For simplicity, in the following the expression investment in renewables will also mean energy e�iciency
measures and the deployment of storage capacity.
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Following classical IO analysis, the amount of output of final goods and intermediates,∆x,

that is necessary to satisfy the additional investment demand can be computed as follows:

∆x = (I− L)−1∆dinv, (3.32)

where I is the unitymatrix andL is thematrix of fixed input coe�icients, which shows thedirect

use of intermediates per unit of output. Leontief’s inverse, (I− L)−1, is the matrix to which

the infinite series of powers ofL converges. Accordingly, it accounts for the fact that, besides

the directly used intermediates, output production also uses indirectly the intermediates

used for production of the direct intermediates and so on. Thus, Leontief’s inverse indicates

the level of output needed to satisfy a unit vector of final demand a�er infinite rounds of this

process.

To this point we have not considered any scarcity e�ects and have assumed that additional

resources and factors of production are readily available and enter the system in an unlimited

manner. However, it is more reasonable to assume that investments in renewables crowd out

other types of demand, e.g., alternative investment or consumption by private households.

Moreover, factors of production are not unlimited in stock and waiting to be employed. To

consider scarcity e�ects we follow two di�erent approaches depending on the actors under-

taking the investment: private households or institutional investors. Moreover, we distinguish

between the investment phase and the operation phase.

Considering scarcity in the investment phase Crowding out in the investment phase for

both types of investors follows a similar principle: investments in renewables crowds out an

alternative average investment (alternative average consumption) in the same amount as the

total investment in renewables. Thus, the calculation of additional output, net of crowding

out reads:

∆xinv,net = (I− L)−1(∆dinv,ii + ∆dinv,ph −∆dinvco −∆dphco), (3.33)

where∆dinv,ii and∆dinv,ph denote the additional investment demand generated by institu-

tional investors and by private households, respectively.∆dinvco is a vector of crowded out

investment demand and∆dphco is a vector of crowd out consumption by private households.
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The elements of∆dinvco are defined as

∆dinvcoi,r =
dinvi,r∑
i,r d

inv
i,r

∑
i,r

∆dinv,iii,r . (3.34)

The fraction on the right hand side of (3.34) describes the proportional distribution of an

average investment among sectors and regions.13 In other words, it describes howmany cents

out of each Euro invested in any of the regions appear as investment demand in a specific

regional sector. The last term on the right hand side is the sum of the investments.∆dphco

is similarly defined, yet in this case an average consumption vector is multiplied with the

additional investment demand generated by private households.

Considering scarcity in the operation phase To consider crowding out in the operations

phase, we apply and modify the approach introduced by Fisher and Marshall (2011) to an

energy economic analysis, and extend it to suit the requirements of an analysis of small regions

embedded in an international IO table.

Before turning to the formal representation, consider first the intuition behind our approach,

which is based on Rybczynski e�ects (Rybczynski 1955) well-known in the trade literature

(see Feenstra 2004). By investing in renewables, the capital stock of each renewables sector

increases by the amount of the respective investment. Assuming that there are no changes in

technology, the capital stock increase attracts into the renewables sectors the amount of labor

that is necessary to use the new capital stock in the production process. Assuming scarcity in

the factors of production, which is a sensible assumption considering the current situation

on the German labor market, labor is necessarily attracted from other sectors of the same

or of other regions. Thus, output in these sectors decreases. This is, of course, a simplified

representation of the whole process, since actually the adjustment consists of infinite rounds

of intermediate input sectors.

Formally, we assume the Leontief production function to be transregional as in Benz et al.

(2014). That means that production of final goods in one region potentially uses factor inputs

from all other regions by using intermediates from the other regions. The production function

13 Recall that dinvi,r is investment demand and is readily available for the IO tables.
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is then given by

yir = min

{
vir11
air11

, . . . ,
virfs
airfs

, . . . ,
virFS
airFS

}
∀ i = 1, . . . , N and r = 1, . . . , R, (3.35)

where yir is final goods output in sector i of region r. virfs is the amount of region s’s factor f

used in region r’s sector i, and airfs the input coe�icient that determines the amount of factor

input f from region swhich is required to produce one unit of output in sector i of region r.

The number of factors is denoted by F .

Assuming full employment, scarcity and a positive remuneration of all production factors

implies that the employment of region r’s factor f in all regions in all sectors equals the

endowment of region r with factor f

vrf =
S∑
s=1

N∑
i=1

airfsyir ∀ f = 1, . . . , F and r = 1, . . . , R. (3.36)

Writing (3.36) in matrix notation leads to

v = A′y, (3.37)

where information on each region’s factor endowment is contained in v, which is a column

vector of length FR. Furthermore, the column vector y of lengthNR contains each region’s

final goods output in each sector.A is a matrix of dimensionNR× FR containing the direct
and indirect factor requirements expressed as factor input coe�icients.

A is not readily available from thedata. Fisher andMarshall (2011) show that it canbeobtained

by multiplying the matrix of direct factor inputs,B, with the Leontief inverse:

A′ = B′(I− Z)−1, (3.38)

whereB is the matrix of direct factor inputs. It contains information on the factors of produc-

tion directly employed to produce one unit of domestic total (intermediate and final goods)

output, x. Denoting low, medium and high-skilled labor as L,M andH , respectively, and

capital asK, and assuming mobile factors of production, that is, that factors of production of
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each region and each sector can be directly employed across sectors and regions,Bm reads

Bm =



L11 M11 H11 K11

...
...

...
...

Lir Mir Hir Kir

...
...

...
...

LNR MNR HNR KNR


, (3.39)

and its dimensions areNR× F . However, we assume the factors of production to be partly
mobile, that is, mobile within Germany and between sectors in Germany but not to be directly

employed in the rest of the world.14 Thus, there are two types of each factor, one for Germany

and one for ROW, whichmeans thatBpm is of dimensionsNR×G, whereG = 2F and the

subscript pm stands for partly mobile. Assuming the rest of the world is the last region in the

multi-regional matrix and letting (R− 1) denote the penultimate region,Bpm reads

Bpm =



L11 0 M11 0 H11 0 K11 0
...

...
...

...
...

...
...

...

LN(R−1) 0 MN(R−1) 0 HN(R−1) 0 KN(R−1) 0

0 L1R 0 M1R 0 H1R 0 K1R

...
...

...
...

...
...

...
...

0 LNR 0 MNR 0 HNR 0 KNR


. (3.40)

Fisher andMarshall (2011) further show that, althoughA is not invertible because the number

of factors F and the number of sector-region combinations IR are not equal, the full employ-

ment condition in (3.37) can be solved for y with the Moore-Penrose Pseudo inverse ofA

denoted byA+. Thus, it follows

y = A′+v + (I−A′+A′)z, (3.41)

where z is an arbitrary vector.

Taking the derivative with respect to factor endowment leads to the result thatA′+ indicates

the output response in each region in each sector to a unit increase in each production factor.

14 This is a strict assumption, yet, in general, any mobility assumption would be possible. While we considered
several di�erent specifications, this specific assumption is the simplest setting that allows to cover our policy
questions.
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However, the approach of taking the derivative with respect to factor endowment at this stage

is not appropriate in a context where the regions are so di�erent in their size and the sectors

in the di�erent regions are assumed to have the same technology.15 The reason is that in

the process of reallocating factors so as to maximize output, there is no further information

available than the production technology. Since we assume the production technology to

be the same in the rest of Germany and the three districts, the same absolute amount of

factors is assigned to a specific sector in all regions, leading to very implausible values for

the regionalized sectors.16 In this context, z becomes relevant. As it is not further specified in

Fisher and Marshall (2011), and we cannot solve for it analytically, we develop an algorithm to

approximate its elements.

The routine starts by assigning an initial value to each element of z and calculate the predicted

ŷ using (3.41). Since we know the actual y, we calculate ŷir’s relative deviation from yir. The

algorithm’s goal is to find a vector ẑ that minimizes themaximum relative deviations. Note

that minimizing the absolute deviations as in a least squares estimation technique would

give more importance to the deviations in the ROW region since the deviations in absolute

terms in the three districts are extremely small in comparison to the ROW. However, we are

particularly interested in the districts, so weminimize the relative deviations.

Specifically, a�er assigning an starting value of one to each element of z, and initially defining

a prediction, ŷir, to be an outlier if it is 4 times larger (or 1/4 times smaller) than the actual

yir,17 we proceed as follows:

1. Calculate ŷ using (3.41) and inserting the current values for ẑ

2. Identify outlier sectors

3. Adjust the values of the ẑ vector for the outlier sectors according to∆ẑir = f(ŷir− yir)18

4. Adjust the threshold for the definition of outliers by 1%

15 As outlined in Section 3.2.2, lacking detailed administrative data at the regional level we need tomake the
“same technology assumption” to be able to produce IO tables and estimates of the production for the districts.
16 Indeed, even if the production technology of sector i di�ers for the regions, the di�erences would not be
substantial. SinceA′+ does not contain information on the size of the sector, very similar amounts of factors of
production would be assigned to sector i in all regions.
17 The initial definition of an outlier sector can be chosen arbitrarily, but it should be in a range that only few
outlier sectors exist.
18 To ensure convergence it proved preferable to use only one percent of the total di�erence for the adjustment,
thus: f(ŷir − yir) = 0.01 · (ŷir − yir)
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5. Repeat steps 1 to 4 until there are no more improvements in the relative deviations

within a chosen limit of iterations (1 million in our case).

We can then insert the estimated ẑ in (3.41). We extend the right term of the right hand side

by v+v = 1 to obtain

y = (A′+ + (I−A′+A′)ẑv+)v. (3.42)

This last transformation allows us to determine how sectoral final goods output, y, reacts to

changes in the factors of production. We define the outer parentheses on the right hand side

of (3.42) as

Λ = A′+ + (I−A′+A′)ẑv+, (3.43)

whereΛ is a matrix whose columns indicate the response in final goods output in each sector

in each region to a unit increase in each factor of production. We extract the columns ofΛ

to have eight single column vectors, one for each factor of production. So, for instance, the

vector containing the e�ect of a unit increase in the capital stock in Germany on output is

denoted as λKG.

Having all the elements to compute the change in output of intermediate and final goods,

we can now outline the procedure. First, we calculate the initial change in output without

considering scarcities as follows:

∆xop,p = (I− L)−1∆dK, (3.44)

where∆dK is a vector of the changes in final demand, whose elements are calculated by

multiplying∆Kir and the fraction of final demand per capital stock, dirKir
. Furthermore, we

assume that∆Kir is equal to the investment in each type of renewables.

The preliminary changes in x require changes in the employment of production factors. We

denote these preliminary changes ∆Kop,p
ir , ∆Lop,pir , ∆M op,p

ir , ∆Hop,p
ir and compute them as

follows:

∆Hop,p
ir = ∆xop,pir

Hir

xir
, (3.45)
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where Hir

xir
is the factor coe�icient, defined as the ratio of high-skilled labor per unit of output.

Accordingly, we can calculate the changes in value added, as well as low andmedium-skilled

labor by inserting the appropriate factor coe�icient. Aggregating the e�ects across sectors

at the level of the regions where production factors are mobile, that is, within Germany and

within ROW, we get the preliminary changes in high-skilled laborHG,op,p.

To compute the net e�ects on x, we subtract the e�ects generated by the scarcity of factors of

production. However, we first need to translate the scarcity e�ects to express them in terms

of intermediates and final goods output, x, since they were computed in terms of final goods

output, y. Sticking to the example of high-skilled labor in Germany, we compute:

gHGir = λHGir
xir
yir
. (3.46)

Now, we can proceed as follows to calculate the net e�ect on x in the operations phase:

∆xop,netir = ∆xop,pir − gLGir LG,op,p − gMG
ir MG,op,p − gHGir HG,op,p − gKGir KG,op,p. (3.47)

The total e�ect on output from the investment and the operations phase is then:

∆xnetir = ∆xinv,netir + ∆xop,netir . (3.48)

Value added and employment e�ects

To evaluate the e�ects of investments in renewables on regional value added, low, medium

and high-skilled employment we can now use the total changes in output from (3.48) and the

factor coe�icients as in the following example for high-skilled employment:

∆Hir = ∆xnetir

Hir

xir
, (3.49)

We can derive aggregate e�ects for the regions, by summing across the sectors in each region:

∆Hr =
N∑
i=1

∆Hir. (3.50)
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Similarly, we can aggregate the e�ects to present results for the single sectors, across regions:

∆Hi =
R∑
r=1

∆Hir, (3.51)

or aggregate to consider only the three districts.

3.3 Data

3.3.1 Input-output table

The IO tables on which the analysis is based are the German IO table of inland production

and imports for the year 2014 and the 2014 World IO Table fromWIOD (Timmer et al. 2015).

For disaggregation of the energy sector we use Exiobase 2 (Wood et al. 2015), which is, to our

knowledge, the only table where the energy sector is disaggregated into several electricity

production technologies, electricity transmission, electricity distribution, heat production,

and gas distribution.

3.3.2 Regional data

From the Regional Accounts database of the federal and regional statistical o�ices we obtain

data for thedistricts’ GDP, aggregated gross value addeddata anddisposable incomeof private

households for the districts. GDP, government consumption, gross investments in equipment

and buildings and private consumption for Germany and Bavaria are also obtained from this

database. Employment statistics by sector both for Germany and the districts come from the

federal employment statistics o�ice.

Electricity and heat consumption, as well as data on electricity generation in the three districts

was obtained from Reinhardt et al. (2017). Updated information was generously provided by

the authors. Data on the length of electricity transmission lines in the districts were obtained

from the Bavarian State Ministry of Economics and Energy (StMWi 2018). Data on electricity

and heat generation by energy source in Germany comes from IEA (2017).
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3.3.3 Factors of production

The three categories of labor input (low-, medium-and high-skilled) for Germany and the ROW

are also from Exiobase 2 (Wood et al. 2015). Data for capital stocks for Germany had to be

derived from various sources. For standard NACE 2-digit sectors, capital stocks are available

from Eurostat (2016a) (total non-financial fixed assets, gross at replacement costs). For the

energy subsectors, capital stocks were disaggregatedmanually. The general approach was

to calculate the capital stock in each subsector from existing data on installed capacity and

the current costs of building such capacity, such as to approximate replacement costs. In a

second step, the results were scaled to the total capital stock of the energy sector available

from Eurostat (2016a). Details on the data sources can be found in Appendix C.2.

3.3.4 Future renewables deployment and investments

Future deployment of renewables for electricity and heat generation, energy e�iciency mea-

sures and electricity storage in each of the three districts were obtained from the simulations

done in the framework of the project by two Geography Departments of LMUMunich. Thus,

the deployment figures constitute an exogenous input in the present study. The simulations

are based on the natural potential for renewable energy generation in the region, the available

land use restrictions (e.g., due to conservation areas), the preferences of the population re-

garding technology types and installations’ size, and the profitability of themeasures, besides

the usually considered factors like interest rates and energy prices.

The scenarios are constructed along twodimensions: one describing the overall economic and

social setting, andanotheroutliningpossibledeploymentpaths. The first dimensionconsiders,

on the one hand, a business-as-usual (BAU) scenario and, on the other hand, a scenario

with a trend towards a more sustainable economy and society (GREEN). The deployment

paths di�erentiate between focusing primarily on small scale installations or on large scale

installations of renewable energies. Combining both dimensions leads to four scenarios: BAU

SMALL, BAU LARGE, GREEN SMALL, and GREEN LARGE.19 From the simulations we obtain the

annual average sum of renovation expenditures per district and information on the capacity

(in kWp) installed per technology type and year from 2015 to 2035. In our analysis, we consider

the average installed capacity per year.
19 For more information on the simulations see Danner et al. (2019). Table C.3 in Appendix C.3 provides an
overview of the scenarios. For a more detailed information of the scenario construction process, see Musch and
Streit (2017).

99



3 Economic E�ects of Regional Energy System Transformations

Table 3.2 depicts the comprehensive set of technologies and measures we consider in the

analysis. It also shows that companies and other institutional investors invest in almost all

type of technologies andmeasures except in heat pumps. Investments by private households

take place in roo�op solar PV, solar thermal installations and heat pumps, on the generation

side, and in district heating networks, renovations and batteries, on the energy infrastructure

side.

Table 3.2 : Technologies, measures and type of investor

Technology Companies Private house-
holds

PV (roo�op) x x
PV (open field) x
Solar thermal x x
Biomass x
Wind onshore x
Hydro x
Deep geothermal x
Geothermal heat pumps x
District heating network x x
Renovations x x
Batteries x x
Power-to-Gas x
Gravity storage x

The investment and operating costs for most power and heat generating technologies, as well

as their distribution among sectors was obtained from Hirschl et al. (2010). The information

for deep geothermal is from Hirschl et al. (2015). The renovations costs as well as their dis-

tribution among sectors is obtained from Hinz (2015), Loga et al. (2015) and IWU (2018). For

each scenario we combine this information with the installed capacity by year, technology,

investor type and district, which results in several cost vectors. We subsequently sum up over

technologies to arrive at a vector by investor type, district and scenario. These vectors are the

basis of the methodology outlined in Section 3.2.3.

In the following, wedescribe thedeployment figures obtained fromDanner et al. (2019). Figure

3.1 shows the average installed capacity for electricity generating technologies, classified by

technology, type of investor and scenario. From the figure, it becomes clear that the largest

di�erences in the yearly installed capacity arise from concentrating the e�orts on small scale

installations (scenarios BAU SMALL and GREEN SMALL) or focusing on large scale installations

(scenarios BAU LARGE and GREEN LARGE). So, for instance, in the GREEN SMALL scenario the
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Figure 3.1 : Installed capacity by scenario, yearly average
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average installed capacity of roo�op solar by households is, with 6 MW, twice as large than in

the GREEN LARGE scenario. The contrary and with even more pronounced di�erences, occurs

for wind installations, where the average installed capacity in the GREEN LARGE is 6MW versus

1.2 under the GREEN SMALL scenario. Figure C.1 in the Appendix shows a similar pattern for

heat generating technologies.

Expressing these figures in relation to the number of inhabitants allows a comparison to

current deployment in the whole of Bavaria. We see that for the GREEN LARGE scenario, the

yearly PV and wind installations are equivalent to 25.7 kW per 1,000 inhabitants and 18.5 kW

per 1,000 inhabitants, respectively. The newly installed capacity in kW per 1,000 inhabitants

in Bavaria for the year 2017 (2018) was 50.9 (31.3) for PV and 24.2 (17) for wind (Agentur für

Erneuerbare Energien 2019). Thus, putting the regional deployment figures into context shows

that, although the regional energy transition in the Bavarian Oberland requires an important

deployment of renewable technologies, it does not require an unrealistic development. Yet,

it is important to mention that these deployment scenarios would not achieve a complete

coverage of the energy demand by renewables by 2035, but would bring the coverage rate in

electricity from 38% in 2015 to 51-62% in 2035. For heating, the coverage rate would increase

from 26% in 2015 to 62-66% in 2035. Although the natural and technical potential would allow

the region tomeet its target by 2035, in the deployment simulations an annual technology

specific “administrative installation cap” was set. The main rationale behind this cap was
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to account for the observed limited capacity of the public administration when it comes to

granting the necessary licenses for the installation of renewable energies.

3.4 Results

In this section we present the results obtained by applying the methodology outlined in

Section 3.2 to investigate the economic e�ects of a future energy transition in the Bavarian

Oberland region. We start by presenting aggregated e�ects for the whole region and then

dig deeper and show value added and employment e�ects for the individual districts and for

individual sectors.

3.4.1 E�ects on value added

Investments in renewables generate an aggregated regional value added ranging from 252 to

325Million EUR, depending on the scenario, as shown in Figure 3.2. Considering that the value

added in 2014 amounted to 9.5 Billion EUR, the presented figures translate to an increase in

value added of between 2.6% and 3.4%. In Figure 3.3 we see that all three districts benefit to

a similar extent from RES investments in absolute terms. The overall e�ects for the whole of

Germany (that is, including the Oberland region) are also positive, yet the rest of the country

su�ers from the crowding out of alternative investments and consumption, and from the

Oberland region attracting factors of production which are then missing for production in the

rest of Germany. The reason for the overall e�ects for Germany to be positive is that we allow

for financial resources to be attracted from the rest of the world when considering crowding

out e�ects in the investment phase. This approach leads to a lower investment crowding out

in Germany than if we had restricted financial resources in the investment phase to come only

from Germany.

Looking at the sectoral e�ects in Figure 3.4, which shows exemplarily the results for the

GREEN LARGE scenario, it is not surprising that the winners from the energy transition in the

Oberland region are the sectors that are more closely related to the installation and operation

of renewablesaswell as to renovations to increase theenergye�iciencyofbuildings. Capturing

about 30% of the additional value added, the Construction sector benefits the most across all

scenarios, as can also be seen for the remaining scenarios depicted in Figures C.5 to C.7 in

the Appendix. Wholesale and repairs, Electricity from solar and Electricity nec; steam and hot
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Figure 3.2 : Aggregated e�ects on value added, by scenario
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Notes: The bars show the aggregate value added figure for the three districts in the Oberland region.

Figure 3.3 : E�ects on value added, by scenario and region
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water are also among the sectors that benefit most across all scenarios.20 Althoughwe cannot

verify the subsectors’ share in the increase or decrease in a sector’s value added, it can be

argued that steam and hot water are the subsectors contributingmost to the increase in value

added in the Electricity nec; steam and hot water sector. Within the Oberland region there

are no proper losers from the energy transition. The sector with the most negative change

in value added is Human health and social work activitieswith a decrease of 0.5 Million EUR.

To a certain extent, this can be explained by our assumption that factors of production are

fully mobile within Germany, granting the Oberland region access to a large pool of factors.

The consequence of the assumption is that sectors in the Oberland region increase their

20 nec: not elsewhere classified.
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production at the expenses of sectors in the rest of the country and not at the expenses of

other sectors within the region.

Figure 3.4 : E�ects on value added for selected sectors, GREEN LARGE scenario
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Electricity from solar (PV and thermal)
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Notes: For a better visualization some sector descriptions have been shortened. See Appendix C.1 for the full
sector descriptions.

The careful reader might be missing conventional electricity sectors among the losers of

the energy transition. In fact, in the rest of the country value added in the sectors Electricity

from coal and Electricity from gas decreases, yet, only by about 5 Million Euro, corresponding

to a decrease of approximately 0.02% of these sectors’ value added in 2014. The almost

insignificant loss for these two sectors is more reassuring than worrying, given the small

size of the Oberland region compared to the rest of Germany. Since there are no coal power

plants in the Oberland region, there is no Electricity from coal sector in any of the districts and,

therefore, no value added losses.

3.4.2 E�ects on employment

The employment e�ects of the energy transition in the Oberland region are shown in Figure

3.5. Most of the increase occurs in medium-skilled employment, making up about 66% of the
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Figure 3.5 : Aggregated e�ects on categories of employment in the Oberland region, by scenario

0
1,

00
0

2,
00

0
3,

00
0

4,
00

0
A

dd
iti

on
al

 e
m

pl
oy

m
en

t (
FT

E)

BAU SMALL BAU LARGE GREEN SMALL GREEN LARGE

Low-skilled Medium-skilled
High-skilled

Figure 3.6 : E�ects on employment by category and region, GREEN LARGE scenario
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additional full time equivalent (FTE) jobs.21 Under the GREEN LARGE scenario, for instance,

the considered investments in renewables create 3,640 medium-skilled jobs in the region,

while the increase in high-skilled and low-skilled jobs is close to 1,460 and 400, respectively.22

In relative terms the increase in medium-skilled employments lies between 3% and 4.5%with

respect to the year 2014. For low-skilledandhigh-skilledemployment, thepercentage increase

is 2-2.9% vs. 1.6-2.4%, respectively. This implies that, in contrast to the absolute changes, the

relative increase in low-skilled employment is larger than in high-skilled employment.

21 Considering that in 2014medium-skilled labor accounted for 52% of employment across all categories, this
result implies that the increase in medium-skilled labor is more than proportional to the pre-energy transition
shares.
22 Note that, technically, we should rather refer to a reallocation of jobs instead of job creation, since we assume
labor to be scarce. However, interpreting the results as job creation in the region is not wrong per se, but we
need to keep in mind that this requires that jobs are “destroyed” somewhere else.
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Figure 3.7 : Aggregated e�ects on employment by category, selected sectors and aggregated region, GREEN
LARGE scenario
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Notes: For a better visualization some sector descriptions have been shortened. See Appendix C.1 for the full
sector descriptions.

Looking at the regional distribution of the employment e�ects, we see that it follows a pattern

similar to the e�ects on value added (see Figure 3.6 and Figures C.2 to C.4 in Appendix C.4).

The negative e�ects for the rest of the country in all three categories show that most of the

employment e�ects occurring in the Oberland region are job reallocations from the rest of

the country and, therefore, cannot be referred to as job creation. Note, however, that in light

of the findings of Buchheim et al. (2020), the employment results under the mobile labor

assumption can to some extent be understood as results for slack labor markets: when we

interpret labor from the rest of the country as coming from an unemployment pool. It has to

be noted though that in our model, these employees contributed to production in the rest of

the country before the “shock”, so it is not an accurate respresentation of unemployment.

Breaking down the employment e�ects in the GREEN LARGE scenario by sector delivers

the results in Figure 3.7.23 Considering the results presented so far, it is not surprising that

for medium-skilled labor the Construction sector exhibits the largest positive e�ects for the

23 A sector breakdown for the other scenarios can be found in Figures C.8-C.10.
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Oberland region and the largest negative e�ects for the rest of the country. Electricity from

solar and Electricity nec; steamand hot water are among the sectors that benefit most in terms

of value added, yet, due to their low labor intensity, the employment e�ects in these sectors

are rather low.

3.5 Conclusions

In this investigation of the economic e�ects of an intended energy transition in the Bavarian

Oberland region we contribute to the literature in several ways. First, we disaggregate the

energy sector in the IO table to be able to consider the specificities of each technology’s

interlinkages with the rest of the economy. Second, we contribute to the literature on the

economic e�ects of regional investments, in a broader sense, andmore specifically, on the

e�ects of regional investments towards a transformation of the energy system. The key

contribution to this literature is the consideration of scarcities, which generate crowding out

e�ects both in the investment and in the operation phase. A third contribution consists in

expanding the approach developed by Fisher and Marshall (2011) Benz et al. (2014) to apply it

to an energy-related question and to improve its performance in a subnational context.

We show that following investments in a sector embedded in a framework where full employ-

ment and scarcity of financial resources is realistically assumed, value added and employment

in this and other sectors increase, but this comes at the expenses of other sectors and other

regions. We further show that assuming full mobility of factors of production within Germany,

gives the sectors in the Oberland region access to a very large pool of workers and capital,

that is, that of the rest of the country. Thus, the negative e�ects on other sectors are almost

fully “exported” to the region(s) where the investments do not take place. In our case the

decline in value added and employment occurs almost exclusively in sectors of the rest of the

country and not in our region of study. Moreover, we find that although employment in the

Oberland region increases in all three categories (low, medium and high-skilled), the increase

in medium-skilled employment is stronger than for the other two categories.

Thus, from the analysis of the employment e�ects of the intended energy transition in the

Bavarian Oberland region we can also draw conclusions for the whole of Germany and for

other countries with similar conditions. Irrespective of whether the energy transition occurs

at the regional or the national level, our results show that fundamentally restructuring the

107



3 Economic E�ects of Regional Energy System Transformations

energy system, as it is necessary to reduce greenhouse gas emissions in a serious manner,

requires an intensified employment of medium-skilled labor. Thus, considering that already

today Germany su�ers frommedium-skilled shortages, this can turn into a bottleneck for the

transformation of the energy system. We could expect market forces to fix the shortages by

increasing incentives (i.e., wages) in the demanded professions. Yet, the working of market

forces could take time, which is not available when talking about mitigating climate change.

The other, better option is to be proactive and increase the awareness for the importance of

these professions and their attractiveness as part of climate and energy policy interventions.

It is important to take into account that our analysis of the economic e�ects of a regional

energy transition is placed in a context where investments in renewable energies remain

constant outside of the Oberland region. If, on the contrary, other regions pursue a similar

goal or the energy transition at the national level is intensified, scarcities in the factors of

production would inhibit the achievement of the goals and therefore limit the positive e�ects

on the regional economy. Hence, further questions that arise in this context concern the

consequences of a far-reaching regionalization of the energy transition goal, that is, when

many regions intend to totally cover energy consumption by renewable energy generation.

In particular, an interesting question would be whether this regionalization could give rise

to a systems competition between the regions, seeking to attract capital (and labor) for the

respective energy transitions.

Possible extensions of the methodology could consider alternatives to our assumption of

full mobility of factors of production within Germany. On the one hand, the full mobility

assumption is a plausible assumption, specially for the production factor capital. On the other

hand, although in theory it is possible that workers move freely, there might also be frictions

binding workers to a specific region. A further development of our methodology could deal

with restricting mobility partially, so that it is possible to attract workers form other regions,

but to a limited extent. One possibility in this respect is to include neighboring districts in the

analysis to allowmobility within that larger region, but not with the rest of Germany. Finally,

modelling unemployment specific to sectors, regions and skill levels can be a useful addition

in light of the findings of Buchheim et al. (2020) and the current economic crisis.

108



Appendices

109





A Appendix to Chapter 1

A.1 Google trends statistics

FigureA.1 shows thegoogle trends statistics for the term“Klimabeitrag” (climate levy) between

January and September 2015. Google trends report relative frequencies of searches (not

absolute search numbers) in weekly intervals. We highlight some of the announcement dates

we identified. We also included information on demonstrations against the climate levy as

this helps explain some spikes in searches.1

Figure A.1 : Google trends statistics for the term “Klimabeitrag” in Germany

We restricted our search to the term “Klimabeitrag” because this is the only term related to

the proposal development with a uniquemeaning. For example, the o�icial term “security

reserve” was o�en replaced by other terms such as “capacity reserve”, “lignite compromise”

or “climate reserve” in the media, making it di�icult to follow the trends in the public interest.

1 For the demonstrations against (and also for) the climate levy proposal, see e.g. https://www.tagesspieg
el.de/wirtschaft/streit-um-zukunft-der-kohle-tausende-demonstrieren-gegen-und-fuer-d
ie-braunkohle/11689424.html.
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A.2 Details on the theoretical analysis

In this section, we provide further details about the theoretical analysis in Section 1.3.

A.2.1 Electricity market data

We obtain data on total load, renewable generation, and day ahead prices at the EEX for

German power market at hourly resolution from Open Energy Modeling Initiative (OEMI 2019).

We calculate the residual load as total load minus renewable electricity generation. Table A.1

presents a set of summary statistics for our main variables based on the raw 2015 electricity

market data for Germany. Figure A.2 illustrates the distribution of hourly electricity demand

and prices, where we only exclude negative prices. In our analysis, we truncate the prices at

the upper and lower 2nd percentiles which drops negative prices as well.

Table A.1 : Summary statistics for data on the electricity market

N Mean Median St. Dev. Min. Max.
Total load (GW) 8760 59.46 59.03 10.56 36.15 79.89
Renewable generation (GW) 8760 12.83 11.26 8.54 0.34 42.47
Residual load (GW) 8760 46.63 46.48 11.75 9.39 78.50
Price (Euro/MWh) 8759 31.63 30.54 12.66 -79.94 99.77

Notes: This table presents a set of summary statistics for our main variables based
on the raw 2015 electricity market data for Germany.

A.2.2 Capacity utilization

In order to conduct our scenario analysis, we have to rank alternative technologies based

on their marginal costs. Our ranking is based on the IEA’s cost projections. We depict the

implication of this strategy in Figure A.3, which shows the technological capacity ranges once

more, but together with the merit order curve and the residual load distribution. In order to

verify this strategy, we also illustrate the distribution of hourly average power generation by

technology in Figure A.4.2 Comparing these two figures verifies the imposedmerit order of

technologies as follows: The distribution for nuclear is le�-tailed, and the mass is close to its

full capacity. This evidence confirms that the nuclear capacity is rarely a marginal technology,

but o�en the infra-marginal technology. The picture for the gas capacity is just the opposite,

verifying that it is the marginal technology only at the high load instants.

2 We obtain these data from ENTSOE Transparency Data Platform.
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Figure A.2 : Electricity prices and residual load in Germany in 2015
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Notes: This figure illustrates the density of hourly residual load over 2015 and the day ahead prices in the EEX
market. The residual load is given by total loadminus generated electricity from renewables.

One can verify the merit order of other technologies with the same reasoning: when the

distribution is more le� skewed and the capacity utilization is higher, then this technology

must have priority in serving to the market. The distribution for the lignite is less le�-skewed

compared to that of nuclear, and it works at the full capacity less o�en. Finally, the power

generation from hard coal has a quite symmetric distribution which is in line with its merit

order rank and its location at the center of the residual load distribution. Hence, this evidence

confirms that the marginal technology is generally hard coal.

A.2.3 Capacities a�ected by the policies

Table A.2 presents the list of units to be transferred into the security reserve. This list includes

five units of RWE. There are twomore firms operatingwith lignite: Vattenfall GmbH andMibrag

GmbH. However, they are not publicly listed companies, hence not relevant for the event

study analysis.

A.2.4 Non-constant marginal costs

In order to illustrate the overall profit e�ect of using a non-constant supply curve, we provide

a naive estimate for the merit order curve. In Figure A.5, we display our linear predictions per
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Figure A.3 : Density of residual load and the merit order
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Notes: This figure illustrates the density of daily residual load in 2015 by technology and the merit order
curve used in our scenario analyses. The residual load is given by total loadminus generated electricity from
renewables.

technology,whereweestimate the supply curve separately for eachcapacity rangedetermined

by the merit order of di�erent technologies. It is seen that the technology-specific fit is very

close to the fitted line to the full sample. In the rest of the section, we use these technology-

specific linear estimations.

Figure A.6 shows the e�ect of the climate levy on the supply curve, where the technological

capacities are illustrated for the baseline situation prior to the arrival of the policy shock.

We assume that the policies a�ect the lignite capacities with the highest marginal cost of

electricity production. The supply curve of the hard coal capacity shi�s to le�, and the a�ected

lignite capacity is relocated just to the le� of the gas capacity. Hence, the location of the gas

capacity does not change in this scenario. Note that this is not the case in the security reserve

scenario, where we simply remove the a�ected lignite capacity from the supply schedule.

We do not present the same figure for the security reserve scenario for brevity. However, we

illustrate the price and profit e�ects for both scenarios in the following analyses.

The predicted changes in prices are illustrated in Figure A.7 for both the climate levy and

the security reserve scenarios. This figure highlights several important points. First, there is

no shi� in the supply curve for the nuclear and una�ected lignite capacities. Therefore, the
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Figure A.4 : Distribution of power generation by technology
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Notes: This figure illustrates the distribution of average daily power generation in 2015 by technology. The
boxes illustrate the quartiles. Capped lines indicate adjacent values (1.5 times the interquartile range away
from the upper and lower quartiles). Outliers are marked with cross.

prices do not change. Second, the location of the gas capacity changes in the security reserve

scenario, but not in the climate levy scenario. As a result, the prices at the high-load instants

do not change due to the climate levy. Third, the price increase is constant in residual load for

the capacity ranges where there is only a shi� in the supply curve. However, the price changes

can be increasing or decreasing in residual load depending on the change in the slope of the

supply curve. Since we assumed linearity, the slope of the supply curve changes only at the

capacity ranges where the production technology changes.

Figure A.8 presents the profit e�ects by using the estimated technology-specific linear merit

order curve. The results are as follows: First, there is nochange in theprofitswhen themarginal

technology is nuclear, as there is no change in prices. Second, there is a minor and negative

profit e�ect at the hours when the una�ected lignite capacity is the marginal technology,

although there is no price change at those hours. The reason is that the policy scenarios

change the RWE’s share in the una�ected lignite capacity. Third, there is a strong jump in

prices at the load instants where the lignite capacity is replaced with hard coal capacity. This

jump results in extra profits from the infra-marginal nuclear and una�ected lignite capacity.

The profit e�ects are increasing in residual load within this capacity range, because the hard

coal replacing lignite capacity has a steeper supply curve. Fourth, at the average load instant

where the hard coal capacity is operating, the increase in price leads to positive profit e�ects

for the infra-marginal nuclear and una�ected lignite capacity. On the other hand, the hard
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Figure A.5 : Technology-specific linear fits

Nuclear Lignite Hard coal Gas

0
2

0
4

0
6

0
8

0
1

0
0

0 20 40 60 80

Day ahead prices AVC by technology (IEA, 2015)

Linear fit by technology Linear fit full sample

P
ri
c
e
 (

E
u
ro

/M
W

h
)

Residual load (GW)

Notes: This figure illustrates the price and residual load observations, the linear fits per technology, the linear
fit to the full sample, and the IEA’s cost projections. The prices are day-ahead prices in the EEX market in 2015.
The residual load is given by total loadminus electricity generation from renewables.

Figure A.6 : Climate levy and the supply curve
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Notes: This figure illustrates the changes in the supply curve for the climate levy scenario. The residual load is
given by total loadminus generated electricity from renewables.
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Figure A.7 : Changes in prices

Nuclear Lignite Hard coal GasNuclear Lignite Hard coal Gas

0
2

4
6

0
.0

1
.0

2
.0

3
.0

4
D

e
n
s
it
y

0 20 40 60 80
Residual load (GW)

Baseline Security reserve

P
ri
c
e

 (
E

u
ro

/M
W

h
)

Notes: This figure illustrates the predicted changes in prices for the climate levy and the security reserve
scenarios. The residual load is given by total loadminus generated electricity from renewables.

Figure A.8 : Changes in profits
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Notes: This figure illustrates the predicted changes in profits at each load instant for the climate levy and the
security reserve scenarios. The residual load is given by total loadminus generated electricity from renewables.
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Table A.2 : Phase-out schedule

Operator Name of unit Nameplate
capacity

Mothballing Decommissioning

Mibrag Buschhaus 352 MW Oct 1, 2016 Sep 30, 2020

RWE Frimmersdorf P 284 MW Oct 1, 2017 Sep 30, 2021
Frimmersdorf Q 278 MW Oct 1, 2017 Sep 30, 2021
Niederaußem E 295 MW Oct 1, 2018 Sep 30, 2022
Niederaußem F 299 MW Oct 1, 2018 Sep 30, 2022
Neurath C 292 MW Oct 1, 2019 Sep 30, 2023

Vattenfall Jänschwalde F 465 MW Oct 1, 2018 Sep 30, 2022
Jänschwalde E 465 MW Oct 1, 2019 Sep 30, 2023

Source: StateAidDecisionText (SA.42536), ClosureofGermanLignitePlants: Letter to theMemberState. Available
at http://ec.europa.eu/competition/state_aid/cases/261321/261321_1762503_157_2.pdf.

coal capacity operating at the average load is now producing with higher marginal costs,

which exerts a negative pressure on the profits. The net e�ect is generally positive to the

le� of the average load and generally negative to the right. The reason is that, the share of

capacity operating with higher marginal cost is higher to the right of the average load instant.

Therefore, the profit e�ects become gradually negative at higher load instants.

We calculate the overall profit e�ects as the average of the profit changes weighted with the

residual load densities. Overall, we find that the climate levy causes 11%profit loss on average.

For the security reserve scenario, even without any compensation, our results indicate that

there is no change in profits on average (0.06% increase). This result shows that allowing

for non-constant marginal costs tends to reduce the negative profit e�ects compared to our

baseline assumption of constant marginal cost.

We conclude this section with some final remarks. The predicted price changes in this section

are quite high. Around the average load, the climate levy leads to amore than 5 Euros increase

in the equilibriumprice, and the security reserve scenario causes an increase around 2.5 Euros.

As a result the market equilibrium occurs at a higher price, which has a strong positive profit

e�ectoneachcapacityunit operatingatanaverage load instant, inparticular for infra-marginal

nuclear and una�ected lignite capacities. These predictions for price changes aremuch higher

than those in Oei et al. (2015), where the predicted price increase is minor. The explanation

might be that our naive estimate of the slope can be upward biased for several reasons. One

problem might be the linearity assumption. Note that the estimated technology-specific

lines form a quite smooth merit order curve. This result may be at odds with its common
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illustration with discrete jumps due to the presence of di�erent production technologies

in the supply schedule. In addition, one might expect its slope to be lower at lower load

instants and higher at higher load instants. However, we have verified our estimations by

conducting nonparametric robustness checks. A more likely problem is the simultaneity bias

in the estimations of reduced-form supply or demand functions. Identifying the supply curve

from data on equilibrium outcomes requires the demand to be fully inelastic. This might be

an extreme assumption at the hourly resolution, as consumers might have a certain degree of

flexibility in shi�ing their activity to di�erent hours in a day (Mier and Weissbart 2019).

A.3 Data and descriptive statistics

Our dataset is mainly from Thomson Reuters Datastream. The market return is based on

the DAX, a performance index consisting of the 30 major German companies trading on the

Frankfurt stock exchange. The continuously compounded returns are first di�erences of the

logarithmof prices. The descriptive statistics for the stock prices andmarket value of the three

utility firms, and the returns to DAX30 index are provided in Table A.3. Figure A.9 illustrates

the distribution of the returns for all three companies. The right panel excludes outliers to

ease comparison around the center of the distribution.

In Appendix A.5, we provide robustness tests by using oil prices and interest rates. Their

inclusion does not have any e�ect on the results. We use the crude oil spot price of Brent, FOB,

and the German three-month government bond benchmark rate as the risk-free rate of return.

The summary statistics for these additional variables are provided in Table A.3 along with our

main variables. The level of and the variation in the interest rates are very low throughout

2015. The returns to oil prices is characterized by many outliers. As a result these variables do

not addmuch to the explanatory power of the market model.

In using EnBW as a control unit, one concern might be that the results for EnBW are driven by

a company-specific characteristic that makes its assets immune to any type of shock. In this

case, using EnBW as a control unit would not eliminate the influence of a potential industry-

wide shock. In Figure A.9 it is clear that the distributions of returns are more or less the same

both at the tails and at the center. Therefore, it is not likely that the results for EnBW are driven

by a company-specific characteristic. Hence, using EnBW as a control unit seems a sensible

strategy.
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Table A.3 : Descriptive statistics

Units Mean Median St. Dev. Min. Max. Obs.
Stock price - RWE € 18.392 19.789 5.330 9.219 25.684 261
Stock price - E.ON € 10.253 10.853 1.957 6.331 12.889 261
Stock price - EnBW € 24.120 24.800 1.660 19.866 26.759 261
Market value - RWE bln. € 10.589 11.393 3.069 5.308 14.787 261
Market value - E.ON bln. € 23.388 24.758 4.464 14.441 29.403 261
Market value - EnBW bln. € 6.672 6.860 0.459 5.495 7.402 261
Risk free rate % -0.001 -0.001 0.000 -0.002 -0.000 261
Returns to DAX30 price index % 0.035 0.063 1.460 -4.816 4.852 261
Returns to oil price % -0.188 0.000 2.346 -12.452 15.537 261

Notes: All values are based on 2015 data. Market value is equal to daily stock price times number
of outstanding shares.

Figure A.9 : Distribution of the returns
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Notes: This figure illustrates the distribution of the returns for all three companies. The dots indicate outliers.
The right panel excludes outliers.
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A.4 Details on estimation strategies

Our baseline estimation strategy is a short-run event study analysis. However, we use several

specifications and identification strategies. To layoutour assumptionsabout the identification

of anevent e�ect and to facilitate comparisonamongalternative estimators and specifications,

this section adopts a regression-based exposition of the short-run event study approach, while

we also explain how it is related to the classical exposition in the main text.3

Consider the following specification to assess the impact of a single event at date T on the

returns of a single asset i:

rit = Xitβi +
+h∑
d=−h

γdiD
d
t + εit, (A.1)

Almost all the elements of this specification has been introduced in the main text: rit is

the continuously compounded return of the asset at the trading date t,Xit is the vector of

covariates predicting the normal performance, and h is the half-width of the event window.

We ignore the pseudo window for brevity. The potential e�ect of the event on the returns is

captured by the set of event day dummies,Dd
t = 1{τ = d}, where d = −h,−h+ 1, .., h and

the relative time index τ measures the distance to the event. Since the coe�icient vectors, βi
and γdi , and the error term, εit, are asset specific, Equation (A.1) is asset specific.

In this specification, as the event day dummies capture the whole variation in the event

window, the eventwindowobservations are not relevant for the estimation of normal returns.4

As a result, this specification is equivalent to the approach described in the main text: the

event related abnormal return is given by γdi = ri,T+d − E[ri,T+d|Xi,T+d], and its estimate is

the prediction error, given by γ̂di = ri,T+d − r̂i,T+d. The null hypothesis that the event does

3 The short run event study methodology was introduced by Fama et al. (1969). See MacKinlay (1997) for a
detailed description. The regression-based exposition is an alternative that is widely used in the literature. See,
for example, Binder (1985a,b).
4 Equation (A.1) excludes the event window observation in the estimation of expected returns as explained
earlier. The pseudo window can be introduced as follows:

rit = Xitβi +
−h−1∑
d=−ku

γdiD
d
t +

h∑
d=−h

γdiD
d
t + εit, (A.2)

where the chosen relative distance to the announcement date is ku such that ku > h. The abnormal returns
between T − ku and T − h are expected to be insignificant, and can be used to conduct pseudo tests.
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not have an e�ect over the event window is formulated as:

H0:
h∑

d=−h

γdi = 0.

To account for many announcements, the second term of Equation (A.1) can be extended to

all announcements. This is the approach described in Binder (1985a). The event day dummies

are modified asDd
t = 1{d = τ for all j}, where Tj denotes the date of announcement j. For

example,D−1 = 1when τ = t− Tj = −1, which is the case for all dates one day prior to any

announcement date. The average abnormal return (AAR) can be estimated by using Equation

(A.1), but with redefined event day dummies.

rit = Xitβi +
h∑

d=−h

γdiD
d
t + εit. (A.3)

In this case, each event day dummy captures the AAR across announcements for a day in the

event window. Therefore, testingH0 amounts to testing the significance of the average of

cumulative abnormal returns (ACAR) over the events. To utilize variation across firms, one

can simply impose γdi = γd and/or βi = β.

In all our estimations, we allow the parameter vector β to be not only firm but also announce-

ment specific. That is, in order to predict the counterfactual returns for each announcement,

we employ a di�erent sample around each announcement, and estimate β separately. This

is equivalent to using Equations (A.1) or (A.2) to estimate the CARs and calculating the ACAR

subsequently, as described in themain text. This approach can be represented by a regression

model as follows:

rijt = Xijtβij +
h∑

d=−h

γdiD
d
t + εijt, (A.4)

where j is the announcement index.5

In a single asset - single event case, there is only one observation for each date in the event

window, hence theestimatedabnormal returns are simplypredictionerrors. This is the case for

5 Note the unusual indexation of the observations in this specification. Normally, the asset return, covariates,
and error term should be uniquely defined by i and t. Indeed, if the normal market performance is estimated
from a common sample of firm i’s returns for all announcements, one can drop the j index. However, we allow
themarket structure to di�er around announcements. In this case, the e�ective time index is τ , which is uniquely
identified by j and t. Similarly, each i and j combination can be considered as a separate cross-sectional unit.
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Equation (A.1) as it represents a separate regression for each firm and announcement. When

there are repeated observations for the event, in the form of many announcements or assets,

and if the specification includes commonevent day dummies across announcements or assets

as in Equations (A.3) and (A.4), then the estimation utilizes some of the variation in the event

window in the calculation of expected returns. In the following discussion, we use common

event day dummies for the sake of clarity and brevity. However, this is not our approach in

practice: we implement all our abnormal returns estimations as described in the main text by

excluding the event windows, and apply aggregation over assets or announcement expost.

The equivalent regression-based approach would be to define separate dummies for each

event day observation identified by (i, j, t). However, if the estimation windows are much

larger than the event windows, then both approaches lead to similar results. In our case, the

di�erences are ignorable.

A.4.1 Endogeneity of the market price index

Given the limited number of observations for the event e�ect, applying a synthetic control

approach (Abadie and Gardeazabal 2003) is an obvious, yet rarely pursued strategy in short-

run event studies. Its main requirement is to have su�icient observations in the pre-event

sample to form a control unit. Extrapolating the outcome variable of the control unit to the

event period and comparing it with the observed outcome of the a�ected units is the same

idea underlying both the short-run event study approach and the synthetic control approach.

Note that Equation (A.1) can be reformulated as a synthetic control estimation whereXitβ̂i

can be considered the predicted outcome of the control unit. Then, the event e�ect is tested

on the di�erence between the observed outcome at the event date, riT , and the extrapolated

control outcome to the event date,XiT β̂i|T−h−1. Indeed, the usual control variable inXit, the

market index, is already a weighted average of asset prices in a given market. The problem is

that the event-a�ected units might participate in this portfolio, and the weights do not aim to

produce a proper counterfactual control unit for the a�ected company, rather to reflect the

average market conditions. The synthetic control approach allows to choose assets to form a

counterfactual portfolio and to estimate their weights.

Let i = 1 be the company that is hypothesized to be a�ected by the event. A synthetic

control is a weighted average of the units in the so-called donor pool of I units una�ected

by the event. Each choice of the vector of weightsW = (w2, ..., wI+1) such that 0≤wi≤1 and
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w2 + · · · + wI+1 = 1 refers to a particular synthetic control. This choice is based on the

pre-event characteristicsZi,t<T−k = Z̄it. Potentially, one can include the outcome variable as

a potential characteristic. That is, we have Z̄it = [r̄it, X̄it]. Indeed, Abadie et al. (2010) argue

that matching on pre-event values of outcome variables mitigates the concerns related to

unobserved factors in Z̄it. Weights can be chosen with the following criteria

w∗i = arg min
wi

∑
i

v
(
Z̄1 − Z̄i∈I

)2 st. 0≤wi≤1, w2 + ...+ wI+1 = 1, (A.5)

where v is a vector of variable-specific weights. For example, in Equation (1), the parameter

vector β can be considered a special form of v. The synthetic control estimation of abnormal

returns is then given by

γd1t = r1t −
∑
i∈I

w∗i rit, for t ∈ [T − h, T + h].

We calculate the cumulative abnormal returns as the sum of abnormal returns. In estimating

a synthetic portfolio, we use DAX30 companies by excluding RWE and E.ON. We base the

matching procedure only on the asset returns of these companies.

A.4.2 Controlling for industry-wide shocks

We use EnBW as the control unit, a company in the same industry but without any relevant

lignite asset. This gives a di�erence-in-di�erences estimate of the abnormal returns by remov-

ing biases from industry-wide shocks. To see this formally, let i = 1 denote the company that

is hypothesized to be a�ected by the event, and i = 2 denote the control unit. Let the dummy

variableCi = 1{i = 1} indicate the treatment group. We have the following specification:

rit = Xitβi +
h∑

d=−h

δdDd
t +

h∑
d=−h

γdDd
tCi + εit. (A.6)

Note that the asset specific intercepts are already included in the parameter vectorβ to control

for di�erences between the two cross-sectional units over the estimationwindow. The second

term captures the shocks that a�ect both units. Then γ̂d is the estimated average event e�ect

on firm 1 on an event window day d.
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A.4.3 Other specifications

Intensity of the event. In some applications, there is a continuous variable measuring the

intensity of the potential event. For example, in one of our robustness analyses, we investigate

the e�ect of a confounding event: in this case, an earnings announcement. In this analysis, the

surprise in the earnings announcement is a continuous variable and if the announcement has

any e�ect, it is expected to be correlated with the magnitude of the surprise. Having repeated

observations for the event e�ect allows estimating the marginal abnormal returns due to the

surprise.

Denote the intensity of the surprise with sij . Then, Equation (A.4) can bemodified as follows:

rijt = Xijtβij +
h∑

d=−h

γdiD
d
t sij + εijt. (A.7)

Here γdi is the marginal e�ect of the surprise. The abnormal return of firm i due to announce-

ment j is calculated as γdi sij .

Estimation window with repeated observations for the event e�ect. As explained ear-

lier, the specification inEquation (A.1) doesnot employany information fromtheeventwindow

to estimate the expected returns. This strategy can control for potential feedbacks from the

event to the normal market performance. However, this is not the case for Equations (A.4) and

(A.7), because the event dummies are assumed to be homogeneous across announcements

(or firms) and do not partial out the whole variation in the event window. Hence, one has to

include a dummy for each observational unit in the event window.

We take care of the feedback from the events to the normalmarket performance by estimating

the normal market performance separately from the pre-event observations. The return on a

day in the event window is predicted by r̂i,T+d = E[ri,T+d|Xi,T+d] = Xij,T+dβ̂ij|T−h−1, where

the estimated parameter vector is conditioned on the available information prior to the event

window. The abnormal return is then given by:

γdij = ri,T+d −Xij,T+dβ̂ij|T−h−1. (A.8)

As a result, the prediction of the expected returns does not employ any information from the

event window. In this case, the intensity of the event e�ect is estimated in a second-stage
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regression by regressing the estimated CARs on the surprise (see MacKinlay 1997). In all our

applications, we exclude the event window observations in estimating the normal market

performance.

A.5 Robustness checks on the choices for baseline speci�cation

In this section, we present the results from alternative choices for the event window and

covariate set. In Table A.4, we present the results from assuming three-days event windows

instead of five days. These estimations correspond to our baseline estimations leading to

Table 1.3 where we assume five-days event windows. As the ACARs in Table A.4 are based on

three days ARs, the size of the coe�icients is smaller compared to their baseline counterparts

also by construction. It is seen that assuming a three-days event window does not alter the

significance levels. We are therefore confident that our baseline specification of five days

does well in capturing the full event e�ects. In Appendix A.9, we present the corresponding

results from announcement specific estimations in Table A.11 which corresponds to the

announcement-specific baseline estimations in Table A.10.

Table A.4 : ACARs by the stages of the proposal: three-days event window

Companies Stages of the proposal
Climate levy proposal Security reserve proposal State aid assessment

RWE 0.007 0.003 -0.063∗∗∗

(0.016) (0.012) (0.015)
E.ON 0.009 -0.009 -0.034∗∗∗

(0.013) (0.010) (0.011)

Notes: This table illustrates the average cumulative abnormal returns of E.ON and RWE from the announce-
ments of each stage of the policy proposal. The event window is the three days centered around an an-
nouncement. The event window observations are excluded in the estimation of normal market performance.
The estimation window is the 90 days just prior to the event window. Standard errors are in parentheses.
Significance levels are indicated as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

In the main text, we do not find any significant market reaction to Event (1a). However, we

provide empirical evidence that it was still surprising. In order to verify that the insignificance

of CARs from Event (1a) is not driven by our event-window specification, we present the

abnormal returns around this event in Figure A.14. It is clear that anymeaningful combination

of these abnormal returns cannot lead to significant CARs.
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Some of our event dates are very close. This is not a problem for the events in Stages 1

and 2, as there are no abnormal patterns in the returns around these dates. However, the

estimation window of Event (3c) includes the event window of Event (3b). Therefore, the

significant abnormal returns due to Event (3b) might have consequences on the estimated

normal market performance of Event (3c). In order to address such concerns, we provide

robustness chekcs by estimating the normalmarket performance by using the 60 dayswindow

which ends at 30 trading days before the event window. The results are presented in Table

A.12 in the Appendix for further tables and figures. It is seen that our results for Event (3c) are

not driven by this concern. As a further specification test on the choice of estimation windows,

Table A.12 presents this robustness check for all the other events as well. The results are

similar to our baseline results.

Table A.5 : ACARs by the stages of the proposal: extended covariate set

Companies Stages of the proposal
Climate levy proposal Security reserve proposal State aid assessment

RWE 0.009 -0.008 -0.102∗∗∗

(0.020) (0.016) (0.019)
E.ON 0.011 -0.019 -0.073∗∗∗

(0.017) (0.014) (0.013)

Notes: This table presents the average cumulative abnormal returns of E.ON and RWE from the announce-
ments of each stage of the policy proposal. The event window is the five days centered around an announce-
ment. The eventwindowobservations are excluded in the estimation of normalmarket performance. Normal
market performance is predicted by a constant, returns to DAX30 index, returns to oil prices, and a risk free
rate of return. The estimation window is the 90 days just prior to the event window. Standard errors are in
parentheses. Significance levels are indicated as ∗ p < 0.10, ∗∗, ∗∗∗ p < 0.01.

In Table A.5, we provide results from extendeding our covariate set by including interest

rates and (returns to) oil prices. We control for oil prices following Keller (2010) and Gri�in

et al. (2015) in order to take into account specificities of energy stocks. We use the crude oil

spot price of Brent, FOB. To control for the opportunity costs of investment on a given date,

we include the risk-free rate of return, namely, the German three-month government bond

benchmark rate. The results in Table A.5 are similar to our baseline results. The reson is that

these additional covariates do not addmuch to the predictive power of the market model in

our application. In the Appendix for further tables and figures (Appendix A.9), we present the

corresponding results from announcement specific estimations in Table A.13.
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A.6 Robustness checks on the baseline distributional
assumption

In this section, we provide specification tests and robustness checks on the assumption of NID

disturbances. The first panel of Table A.6 presents the results from the estimation of normal

market performance. For brevity, we focus on the announcements in stage 3. The second

panel presents the p-values from various specification tests on the residuals. The Durbin test

is for serial correlation where the null hypothesis is there is no serial correlation up to fi�h

order. The null is rejected if any lags of the residuals is significant in an auxiliary regression of

the residuals on its lags. The null for the LM (Engle’s Lagrangemultiplier) tests is that there

is no pth order autoregressive conditional heteroscedasticity (ARCH(p)) in the residuals. The

third panel presents the alternative estimates for the standard errors: (i) robust standard

errors for arbitrary forms of heteroscedasticity, (ii) standard errors based on pair-bootstraping,

and (iii) Newey-West standard errors taking into account up to fi�h order autocorrelations.

According to the results from the Durbin tests and the LM tests for ARCH(p) e�ects, there is no

sign for serial correlation or heteroscedaticity. This result is further confirmed by the results

in the third panel. The alternative estimates of standard errors are very close to our baseline

estimates. There is only one exception to this general result, where the Durbin test rejects the

null in the fi�h column. However, the baseline and the Newey-West standard errors are still

very close to each other, suggesting that the influence of significant lag order is minor.

Figure A.10 illustrates the prediction intervals based on bootstrapping. Here, the contribu-

tion of sampling uncertainty is calculated based on pair-bootstrapped standard errors. As

mentioned in the main text, this type of uncertainty is typically small which is the case in our

application too. Therefore, the estimationmethod for sampling uncertainty have almost no

influence on the width of the prediction intervals. In Figure A.10, we assume IID errors in esti-

mating the error uncertainty by resampling OLS-residuals with replacement (1000 repetitions)

which is robust to departures from normality assumption. The width of these confidence

intervals are close to their baseline counterparts. Table A.7 presents the bootstrapped stan-

dard errors calculated from the empirical distribution of resampled OLS residuals. Again, the

results are very close to their baseline counterparts.
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Table A.6 : Specification tests and alternative estimates of standard errors

RWE-(3a) RWE-(3b) RWE-(3c) E.ON-(3a) E.ON-(3b) E.ON-(3c)
DAX30 Market Return 0.669 0.699 0.864 0.710 0.701 0.784

(0.104) (0.090) (0.106) (0.080) (0.070) (0.066)
Durbin test 0.683 0.255 0.521 0.506 0.063 0.355
LM test - order 1 0.997 0.626 0.716 0.391 0.717 0.421
LM test - order 3 0.875 0.824 0.908 0.484 0.796 0.797
LM test - order 5 0.929 0.911 0.976 0.320 0.797 0.903
Robust s.e. 0.087 0.076 0.106 0.075 0.065 0.090
Bootstrap s.e. 0.090 0.080 0.108 0.078 0.067 0.090
Newey-West s.e. 0.091 0.083 0.099 0.075 0.064 0.074

Notes: The first panel presents the results from the OLS estimation of normal market performance. The
second panel presents the p-values from various specification tests on the residuals. The Durbin test is for
serial correlation where the null hypothesis is there is no serial correlation up to pth order. The null for the
LM (Engle’s Lagrangemultiplier) tests is there is no pth order autoregressive conditional heteroscedasticity
(ARCH(p)) in the residuals. The third panel presents the alternative estimates for the standard errors. Boot-
strap standard errors are based on 1000 replications. The estimation of Newey-West standard errors include
all the lags of the residuals up to fi�h order.

Table A.7 : CARs and bootstrapped standard 
errors

Companies Announcements
(3a) (3b) (3c)

RWE

E.ON

-0.020 
(0.033) 
0.004 

( 0.025)

-0.135∗∗∗ 

(0.032)
-0.000 
(0.024)

-0.150∗∗∗ 

(0.036)
-0.220∗∗∗ 

(0.028)

Notes: This table presents the cumulative abnormal returns of RWE and E.ON from each announcement in 
the third stage of the policy proposal. The event window is the five days centered around an announcement. 
The estimation window is the 90 days just prior to the event window. Hence, the event window observations 

are excluded in the estimation of normal market performance. Bootstrapped standard errors are in 
parentheses. Significance levels are indicated as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure A.10 : CARs and bootstrap prediction intervals
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Notes: This figure presents the CARs of RWE and E.ON from each announcement in the third stage of the policy
proposal. The event window is the five days centered around an announcement (date 0) indicated with the
dashed lines. In the figure, the days prior to the event window are the placebo announcement days. The event
window and pseudo window observations are excluded in the estimation of normal market performance. The
estimation window is the 90 days just prior to the pseudo window. The 90% and 95% bootstrap confidence
intervals are indicated by shaded areas.
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A.7 Confounding events investigation

This section presents details on the search for potential confounding events around announce-

ments (3b) and (3c). We conducted a search for English- and German-language news in Lexis-

Nexis for the five-day window (working days) around each of these announcements, filtering

by company name (RWE or E.ON, respectively). We restricted the search to business news in

newswires and press releases to avoid a large number of news items appearingmultiple times.

Still, we were faced with a large number of very diverse news items in the event window for

each firm.

We thereforemanually categorized the news items according to their content and counted the

number of news items on a specific topic in the given event window. We then assessed, based

on content and press coverage, whether the news topics could be relevant drivers for the

stock performance we observe in our event window. When we identified a potential company-

specific confounding event for announcement (2b), we performed robustness analyses (see

Section 1.7.2 for robustness checks on earnings announcements). For announcement (3c),

we are more concerned with news that a�ects both RWE and E.ON, and thus performed

robustness analyses for the case of a potential industry confounding event. Here we identified

thenuclearprovisioning issueasoutlined inSection1.7.2. LexisNexis providesagoodoverview

of important issues around the event dates, but it was essential to complement this with own

research on the events identified as potentially confounding. For instance, we found that the

German business newspaper Handelsblatt was the first to report on the nuclear provisioning

report on September 11; however, the first news items in LexisNexis mentioning this in the

context of RWE appear on September 15.

In Appendix A.9, Tables A.17, A.18, A.19, and A.20 present the main news topics and numbers

of news items on these topics for each company and each event window.

A.8 Estimation of earnings surprise

E�ects of earnings announcements. We start by investigating the information content of

quarterly earnings announcements for the market valuation of RWE and E.ON. If there is any

investor reaction to earnings announcements, it should be due to the departure of announced

earnings from investors’ prior expectations, namely, the surprise in the information release.
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Figure A.11 : Distribution of SUE
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Notes: This figure illustrates the distribution of SUEs in our sample.

We proxy the expected earnings with the quarterly earnings forecasts reported by the Insti-

tutional Brokers Estimate System (I/B/E/S). It is the average of earnings forecasts by many

analysts for a large number of firms. Our measure of surprise is the di�erence between an-

nounced earnings (AE) and mean forecasted earnings (MFE) normalized by the standard

deviation of the forecasts. This measure is called the standardized unexpected earnings (SUE),

which is provided by the Thomson Reuters Database. We employ the dataset on quarterly

earnings announcements of DAX30 companies in 2015 and 2016. Figure A.11 illustrates the

distribution of SUEs in our sample. The SUEs for RWE and E.ON within the event (3b) window

are indicated by dots. While the SUE is small and positive for E.ON, it is negative and large for

RWE. This pattern has the potential to explain our findings for event (3b).

The technical details of estimating the marginal e�ect of SUE are provided in Appendix A.4.3.

In words, we start by estimating the five-day CARs for all the earnings announcements in our

sample by excluding the two earnings announcements by E.ON and RWE just before event (3b).

Next, we estimate themarginal e�ect of SUE on the predicted CARs. The results are presented

in the first column of Table A.8. In the first regression, the e�ect of SUE on the five-day CARs

are insignificant. However, this does not mean that the earnings announcement has no e�ect.

In the following columns, we estimate the marginal e�ect of SUE on the individual ARs in the

event window. Evidently, the only significant impact occurs on the event day. The size of the

estimated e�ects on the days before and a�er announcement dates is very small. Therefore,
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Table A.8 : Marginal e�ect of earnings surprise

5-Days CAR ARs
Relative distance (-2) (-1) (0) (1) (2)
SUE 0.003 0.000 0.000 0.003∗∗∗ -0.000 0.000

(0.002) (0.000) (0.001) (0.001) (0.001) (0.000)
Observations 120 120 120 120 120 120

Notes: This table presents the estimatedmarginal e�ect of SUE on the predicted CARs. Standard errors are in
parentheses. Significance levels are indicated as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table A.9 : Predicted CARs and ARs due to earnings surprise

Panel A: Predicted 5-day CARs due to earnings surprise
Company Date Predicted CARs by SUE 95% Confidence Interval
E.ON 8/12/2015 0.005 -0.000 0.011
RWE 8/13/2015 -0.032 -0.065 0.002

Panel B: Predicted ARs due to earnings surprise
Company Date Relative distance Predicted AR by SUE 95% Confidence interval
E.ON 18/10/2015 -2 0.000 -0.001 0.002

8/11/2015 -1 0.000 -0.002 0.003
8/12/2015 0 0.006 0.002 0.009
8/13/2015 1 -0.001 -0.003 0.002
8/14/2015 2 0.000 -0.001 0.002

RWE 8/11/2015 -2 -0.001 -0.009 0.008
8/12/2015 -1 -0.003 -0.018 0.013
8/13/2015 0 -0.032 -0.050 -0.014
8/14/2015 1 0.006 -0.009 0.020
8/15/2015 2 -0.002 -0.009 0.005

Notes: This table presents the predicted CARs and ARs due to the earnings announcements of E.ON
and RWE just before event (3b) .

the size of the estimated e�ects on the five-day CARs and the estimated e�ect on the ARs on

the event date are virtually the same.

In the next step, we employ these results to predict the CARs and ARs due to the earnings

announcements of E.ON and RWE just before event (3b). The results are presented in Table

A.9. Panel A shows the CARs predicted by the SUEs, and Panel B shows the predicted ARs for

each day of the event window. Reflecting the results in Table A.8, the predicted CARs due

to SUEs are positive and small for E.ON, while they are negative and large for RWE. Panel B

shows that the impact of the earnings announcement occurs only on the event day, and the

95% confidence intervals support the estimated sign of the impacts. Other than on the event

day, the size of the announcement e�ect is negligible and insignificant.

133



A Appendix to Chapter 1

Figure A.12 : E�ect of announcement (3b) corrected for earnings surprise
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Notes: This figure presents the ARs and CARs of E.ON and RWE from announcement (3b) corrected for the
earnings announcements. The event window is the five days centered around an announcement (date 0)
indicated with the dashed lines. The days prior to the event window are the placebo announcement days. The
event window and pseudo window observations are excluded in the estimation of normal market performance.
The estimation window is the 90 days just prior to the pseudo window. The 90% and 95% confidence intervals
for the (uncorrected CARs) are presented as forecast intervals (shaded areas). The 90% confidence interval of
predicted e�ect of earnings announcement is illustrated around the corrected CARs.

Correcting for the e�ect of earnings announcements. The rolling CARs and the ARs, cor-

rected for the size of the predicted earnings announcement e�ect, are presented in Figure

A.12. This figure di�ers from the one presented in the main text in two ways. First, this fig-

ure illustrates the two sources of uncertainity, rather than the aggregated one presented

in themain text. Second, the correction assumes a five-day event window for the earnings

announcement. For example, the correction for RWE includes the dates between -3 and 1,

as the earnings announcement of RWE is on date -1. This is also a conservative approach

given that our results reveal that the e�ect of the earnings announcements is taking place
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on the announcement date only. The figure also illustrates the 90% confidence interval of

the predicted earnings announcement e�ect constructed around the corrected CARs and

ARs. The e�ect of the correction on CARs extends beyond the correction window due to the

aggregation of ARs across days.

Figure A.12 confirms the results presented in the main text and illustrates its details. An

informal and conservative inference strategy is to compare the 90% confidence intervals. It

is conservative, because a formal comparison requires calculating the standard error of the

di�erence of these two random e�ects as in the main text. In our case, assuming that these

twoperedictions are uncorrelated is reasonable due to theway that these e�ects are predicted

by using di�erent samples. In this case, the standard error of the di�erence is equal to the

square-root of the sumof variances. The standard error of the net e�ect is always smaller than

the sum of the standard errors of the two predictions. Hence, the formal confidence interval,

presented in the main text, is smaller than the sum of the confidence intervals of these two

e�ects. However, Figure A.12 is useful to illustrate the confidence intervals separately for

expositional clarity. It is seen that the confidence intervals of the corrected CAR on the event

day (day 0) and the predicted returns do not overlap. Figure A.12 do not present the 95%

confidence interval for the corrected CAR, which do overlap slightly. As a result, the corrected

e�ect of event (3b) is still significant at reasonable levels, but much smaller than the baseline

estimate.
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A.9 Additional tables and �gures

Table A.10 : CARs by announcement: baseline specification

Stages Announcements Companies
RWE E.ON EnBW

Climate levy proposal 1a 0.033 0.040 -0.004
(0.034) (0.029) (0.039)

1b 0.004 -0.011 -0.014
(0.035) (0.029) (0.039)

1c -0.002 0.005 0.007
(0.035) (0.028) (0.042)

Security reserve 2a -0.004 -0.029 0.014
(0.033) (0.027) (0.044)

2b -0.033 -0.028 0.017
(0.032) (0.027) (0.043)

2c -0.002 -0.013 -0.007
(0.030) (0.028) (0.048)

2d 0.012 -0.007 0.011
(0.030) (0.027) (0.049)

State aid assessment 3a -0.020 0.004 -0.001
(0.031) (0.024) (0.050)

3b -0.135∗∗∗ 0.000 -0.004
(0.028) (0.021) (0.050)

3c -0.150∗∗∗ -0.220∗∗∗ -0.017
(0.038) (0.024) (0.050)

Notes: This table presents the cumulative abnormal returns of all companies due to each announcement.
The event window is the five days centered around an announcement. The estimation window is the 90
days just prior to the event window. Hence, the event window observations are excluded in the estimation
of normal market performance. Standard errors are in parentheses. Significance levels are indicated as ∗

p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.11 : CARs by announcement: three-day event window

Stages Announcements Companies
RWE E.ON EnBW

Climate levy proposal 1a 0.000 0.012 0.020
(0.027) (0.023) (0.031)

1b 0.025 0.006 0.005
(0.027) (0.023) (0.030)

1c -0.003 0.010 0.014
(0.027) (0.021) (0.032)

Security reserve proposal 2a -0.006 -0.026 0.024
(0.026) (0.021) (0.033)

2b -0.013 0.003 -0.002
(0.025) (0.021) (0.034)

2c 0.003 -0.019 -0.026
(0.023) (0.021) (0.037)

2d 0.027 0.006 -0.002
(0.022) (0.020) (0.038)

State aid assessment 3a -0.004 0.000 0.015
(0.024) (0.018) (0.039)

3b -0.108∗∗∗ -0.010 -0.006
(0.021) (0.017) (0.039)

3c -0.076∗∗∗ -0.092∗∗∗ -0.016
(0.029) (0.021) (0.038)

Notes: This table presents the cumulative abnormal returns of all companies due to each announcement.
The event window is the three days centered around an announcement. The event window observations are
excluded in the estimation of normal market performance. The estimation window is the 90 days just prior
to the event window. Standard errors are in parentheses. Significance levels are indicated as ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table A.12 : CARs by announcement: robustness to estimation window

Stages Announcements Companies
RWE E.ON EnBW

Climate levy proposal 1a 0.036 0.041 -0.002
(0.035) (0.028) (0.040)

1b 0.010 -0.008 -0.014
(0.034) (0.028) (0.042)

1c 0.000 0.009 0.005
(0.038) (0.029) (0.034)

Security reserve proposal 2a -0.009 -0.026 0.015
(0.036) (0.029) (0.034)

2b -0.038 -0.025 0.018
(0.034) (0.030) (0.040)

2c -0.003 -0.013 0.002
(0.033) (0.030) (0.046)

2d 0.009 -0.016 0.004
(0.033) (0.028) (0.044)

State aid assessments 3a -0.018 -0.002 -0.013
(0.030) (0.025) (0.048)

3b -0.133∗∗∗ 0.001 -0.004
(0.026) (0.023) (0.057)

3c -0.162∗∗∗ -0.225∗∗∗ -0.014
(0.029) (0.022) (0.047)

Notes: This table presents the cumulative abnormal returns of all companies due to each announcement.
The event window is the five days centered around an announcement. The event window observations are
excluded in the estimation of normal market performance. The estimation window is the 60 days window
ending at 30 days prior to the event window. Standard errors are in parentheses. Significance levels are
indicated as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.13 : CARs by announcement: extended covariate set

Stages Announcements Companies
RWE E.ON EnBW

Climate levy proposal 1a 0.032 0.046 0.010
(0.035) (0.029) (0.040)

1b 0.002 -0.013 -0.009
(0.035) (0.030) (0.040)

1c -0.008 0.000 0.010
(0.035) (0.028) (0.043)

Security reserve proposal 2a -0.006 -0.029 0.015
(0.033) (0.027) (0.044)

2b -0.035 -0.028 0.016
(0.032) (0.027) (0.044)

2c -0.003 -0.013 -0.008
(0.030) (0.028) (0.049)

2d 0.012 -0.007 0.010
(0.030) (0.027) (0.050)

State aid assessment 3a -0.020 0.004 -0.005
(0.031) (0.024) (0.051)

3b -0.135∗∗∗ 0.001 -0.006
(0.028) (0.021) (0.051)

3c -0.152∗∗∗ -0.222∗∗∗ -0.016
(0.038) (0.024) (0.051)

Notes: This table presents the cumulative abnormal returns of all companies due to each announcement. The
event window is the five days centered around an announcement. Normal market performance is predicted
by a constant, returns to DAX30 price index, returns to oil prices, and a risk-free rate of return. The estimation
window is the 90 days just prior to the event window. Hence, the event window observations are excluded in
the estimation of normal market performance. Standard errors are in parentheses. Significance levels are
indicated as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table A.14 : Synthetic control: CARs and non-parametric p-values

Companies Announcements
(3a) (3b) (3b)

RWE -0.006 -0.130 -0.184
(0.808) (0.038) (0.000)

E.ON 0.017 0.006 -0.243
(0.885) (0.231) (0.000)

Notes: This table presents the synthetic-control estimates of the cumulative abnormal returns of RWE and
E.ON from each announcement in the third stage of the policy proposal. The event window is the five days
centered around an announcement. The estimation window is the 90 days just prior to the pseudo window.
Hence, the event window observations are excluded in the estimation of normal market performance. Non-
parametric p-values, following Abadie et al. 2015, are in parentheses. The p-values are the fraction of the
units in the control group (donor pool) for which the estimated e�ects are at least as large as the estimated
e�ect for the treated unit. If the pre-treatment match quality is distorted by some control units, the p-values
can be conservative. In this case, one can normalize the estimated e�ects with pre-treatment RMSE reflecting
the match quality. We do not apply this normalization. Pre-tretament RMSEs are illustrated in the main text.
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Table A.15 : ACARs by the stages of the proposal: EnBW as the control unit

Companies Stages of the proposal
Climate levy proposal Security reserve proposal State aid assessment

RWE 0.016 -0.016 -0.094∗∗∗

(0.031) (0.027) (0.033)
E.ON 0.015 -0.028 -0.065∗∗

(0.028) (0.026) (0.031)

Notes: This table presents the average cumulative abnormal returns of RWE and E.ON for each stage of
the proposal by using EnBW as a control unit. The event window is the five days centered around an
announcement. The estimation window is the 90 days just prior to the event window. Hence, the event
window observations are excluded in the estimation of normal market performance. Standard errors are in
parentheses. Significance levels are indicated as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table A.16 : CARs by announcement: EnBW as the control unit

Stages Announcements Companies
RWE E.ON

Climate levy proposal 1a 0.037 0.044
(0.053) (0.049)

1b 0.018 0.003
(0.054) (0.049)

1c -0.008 -0.002
(0.055) (0.049)

Security reserve proposal 2a -0.018 -0.043
(0.054) (0.050)

2b -0.050 -0.046
(0.053) (0.050)

2c 0.004 -0.006
(0.056) (0.055)

2d 0.001 -0.019
(0.054) (0.054)

State aid assessment 3a -0.019 0.005
(0.055) (0.054)

3b -0.131∗∗∗ 0.004
(0.055) (0.053)

3c -0.133∗∗ -0.203∗∗∗

(0.061) (0.055)

Notes: This table presents the cumulative abnormal returns of RWE and E.ON due to each announcement by
using EnBW as a control unit. The event window is the five days centered around an announcement. The
estimation window is the 90 days just prior to the event window. Hence, the event window observations are
excluded in the estimation of normal market performance. Standard errors are in parentheses. Significance
levels are indicated as ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table A.17 : Type and number of company-related news around event (3b), RWE

Topic Wed 12/08 Thu 13/08 Fri 14/08 Mon 17/08 Tue 18/08

Earnings announcements (EA), financials 1 9 1
Background on EA, company strategy 2 6
Voting rights announcements 4
Investments of company 2 5 3
Personnel appointments 2
Other 2

Source: Own summary based on LexisNexis, German- and English-language newswires andpress releases, filtered
by date and company name. “Other” includes local activities such as Czech gas management and local protests.

Table A.18 : Type and number of company-related news around event (3b), E.ON

Topic Wed 12/08 Thu 13/08 Fri 14/08 Mon 17/08 Tue 18/08

Earnings announcements (EA), financials 7
EA and background, company strategy 16 6
E.ON Russia financials 7 15 1
E.ON UK financials 1 1 2 1 1
Voting rights announcements 5
Investments of company 5 2
Other 2 4 2

Source: Own summary based on LexisNexis, German- and English-language newswires andpress releases, filtered
by date and company name. “Other” includes local activities such as the opening of a plant, school visits, public
relation activities related to a wind farm, etc., or the mentioning of E.ON in news about other firms. News items
from Saturday and Sunday are assigned to the following Monday.
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Table A.19 : Type and number of company-related news around event (3c), RWE

Topic Thu 10/09 Fri 11/09 Mon 14/09 Tue 15/09 Wed 16/09

Tendering and contracting 6 4
Issues with power plant permissions 4 1 1 2
Personnel issues 1 4
Background on past stock performance 4 1
Pending lawsuits 6 4
Local operations & PR 6 1
General industry news (gas supply) 4 2
Nuclear provisioning Germany 1 7
Other 1 1 3 2

Notes: Industry-wide news in bold.
Source: Own summary based on LexisNexis, German- and English-language newswires andpress releases, filtered
by date and company name. News items from Saturday are assigned to the following Monday. “Pending lawsuits”
relates to a gas procurement conflict where RWE may need to pay a penalty, for part of which the company
already booked provisions. “Issues with power plant permissions” involve wind farm projects (new proposal
a�er rejection) and a coal-fired power plant (court ruling that permit is upheld). “General industry news on gas
supply” is a report on Iran as a potential new gas supplier for Europe. While this news is relevant industry-wide,
we would expect it to have a positive impact on returns, if any.

Table A.20 : Type and number of company-related news around event (3c), E.ON

Topic Thu 10/09 Fri 11/09 Mon 14/09 Tue 15/09 Wed 16/09

Tendering and contracting 2
Obligatory notifications on stocks and se-
curities

3

Nord-Stream pipeline 16 4 3
E.ON’s record low & background info on
restructuring

10

Stock market update mentioning E.ON 2 1 3
Local customer relations and projects 2 6 3 2
General industry news (gas supply) 1 3 1
Nuclear provisioning Germany 1 3
Other 1 1 2 1

Notes: Industry-wide news in bold.
Source: Own summary based on LexisNexis, German- and English-language newswires andpress releases, filtered
by date and company name. News items from Saturday are assigned to the following Monday. “Nord-Stream
pipeline” refers to business news over the shareholders’ agreement on the pipeline, as well as political concerns
voiced by Slovakia and Ukraine (calling the project “anti-European”). “E.ON’s record low” on stock markets was
recorded on September 10 and is why E.ON appeared in several general stock market updates. In background
information, it was attributed to an unexpected announcement related to E.ON’s company reorganization: In
splitting the company into “clean” E.ON and “dirty” Uniper, E.ON would keep its nuclear business and the related
liabilities. This decision is also relevant for the subsequent reaction of E.ON’s shares to the nuclear provisioning
assessment. “General industry news on gas supply” is a report on Iran as a potential new gas supplier for Europe.
While this news is relevant industry wide, we would expect it to have a positive impact on returns, if any.
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Figure A.13 : Abnormal returns in the placebo tests
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Notes: This figure presents the ARs of RWE, E.ON and EnBW from each announcement in the third stage of the
policy proposal. The event window is the five days centered around an announcement (date 0) indicated with
the dashed lines. In the figure, the days prior to the event window are the placebo announcement days. The
event window and pseudo window observations are excluded in the estimation of normal market performance.
The estimation window is the 90 days just prior to the pseudo window. The 90% and 95% confidence intervals
are indicated by shaded areas.
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Figure A.14 : Abnormal returns around event (1a)
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Notes: This figure presents the ARs of RWE and E.ON around Event (1a). The event window is the five days
centered around an announcement (date 0) indicated with the dashed lines. In the figure, the days prior to the
event window are the placebo announcement days. The event window and pseudo window observations are
excluded in the estimation of normal market performance. The estimation window is the 90 days just prior to
the pseudo window. The 90% and 95% confidence intervals are indicated by shaded areas.
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Figure A.15 : Abnormal returns from the synthetic control estimations
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Notes: This figure presents the synthetic control estimates for ARs of E.ON and RWE from each announcement
in the third stage of the policy proposal. The event window is the five days centered around an announcement
(date 0) indicated with the dashed lines. In the figure, the days prior to the event window are the placebo
announcement days. The event window and pseudo window observations are excluded in the estimation
of normal market performance. The estimation window is the 90 days just prior to the pseudo window. The
in-place placebo tests are illustrated with grey lines, and the grey areas are 90% and 95% confidence intervals
constructed from the pre-treatment RMSE.
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Figure A.16 : Abnormal returns: EnBW as the control unit
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Notes: This figure presents the estimates for ARs of E.ON and RWE from each announcement in the third stage
of the policy proposal by using EnBW as the control unit. The event window is the five days centered around
an announcement (date 0) indicated with the dashed lines. In the figure, the days prior to the event window
are the placebo announcement days. The event window and pseudo window observations are excluded in
the estimation of normal market performance. The estimation window is the 90 days just prior to the pseudo
window. The 90% and 95% confidence intervals are indicated by shaded areas.
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Figure A.17 : ARs for announcement (3b) corrected for earnings Surprise
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Notes: This figure presents the ARs of E.ON and RWE from announcement (3b) corrected for the e�ect of
earnings announcements. The event window is the five days centered around an announcement (date 0)
indicated with the dashed lines. The days prior to the event window are the placebo announcement days. The
event window and pseudo window observations are excluded in the estimation of normal market performance.
The estimation window is the 90 days just prior to the pseudo window. The 90% and 95% confidence intervals
are indicated by shaded areas.
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B.1 Patent example and patent classi�cation codes

Figure B.1 : Patent example
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Table B.1 : Patent classification codes: transport

GREEN

B60K 1 Arrangement or mounting of electrical propulsion units
B60K 6 Arrangement or mounting of hybrid propulsion systems comprising electric motors

and internal combustion
B60K 16 Arrangements in connection with power supply of propulsion units in vehicles from

force of nature, e.g. sun or wind
B60L 3 Electric devices on electrically-propelled vehicles
B60L 7 Dynamic electric regenerative braking
B60L 8 Electric propulsion with power supply from force of nature, e.g. sun, wind
B60L 9 Electric propulsion with power supply external to vehicle
B60L 11* Electric propulsion with power supplied within the vehicle
B60L 13 Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Mag-

netic suspension or levitation for vehicles
B60M Power supply lines, or devices along rails, for electrically-propelled vehicles
B60L 15 Methods, circuits, or devices for controlling the traction-motor speed of electrically-

propelled vehicles
B60R 16 Electric or fluid circuits specially adapted for vehicles and not otherwise provided

for
B60S 5/06 Supplying batteries to, or removing batteries from, vehicles
B60W 10** Conjoint control of vehicles sub-units of di�erent type or di�erent function (for

propulsion of purely electrically-propelled vehicles with power supplied within the
vehicle B60L0011)

B60W 20** Control systems specially adapted for hybrid vehicles
H01 M8 Fuel cells

GREY***

F02M 39, F02M 71 Fuel injection apparatus
F02M 3/02-05 Idling devices for carburettors preventing flow of idling fuel
F02M 23 Apparatus for adding secondary air to fuel-air mixture
F02M 25 Engine-pertinent apparatus for adding non-fuel substances or small quantities of

secondary fuel to combustion-air, main fuel, or fuel-air mixture
F02D 41 Electric control of supply of combustion mixture or its constituents
F02B 47/06 Methods of operating engines involving adding non-fuel substances or anti-knock

agents to combustion air, fuel, or fuel-air mixtures of engines, the substances includ-
ing non-airborne oxygen

FOSSIL

F02B* Internal-combustion piston engines; combustion engines in general
F02D** Controlling combustion engines
F02F Cylinders, pistons, or casing for combustion engines; arrangements of sealings in

combustion engines
F02M Supplying combustion engines with combustiles mixtures or constituents thereof
F02N Starting of combustion engines
F02P Ignition (other than compression ignition) for internal-combustion engines
* : A patentwith codeB60L 11 is not considered cleanwhen it is also classified as F02B (e.g., a diesel locomotive).
** : Patents with code B60W 10 and B60W 20 are not considered as clean when they are also classified as F02D.
*** : Note that codes classified as grey are a subset of codes classified as fossil in the transport case.
Source: Adapted from Dechezleprêtre et al. (2017), using information from the International Patent Classifi-
cation. In this table, all codes are from the International Patent Classification (IPC).
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Table B.2 : Patent classification codes: energy

GREEN

Y02E 10 Energy generation through renewable energy sources
Y02E 30 Energy generation of nuclear origin
E02B 8/08 Tide or wave power plants
F03B 13/10-26 Submerged units incorporating electric generators or motors characterized by using

wave or tide energy
F03D Windmotors
F03G 4 Devices for producing mechanical power from geothermal energy
F03G 6 Devices for producing mechanical power from solar energy
F03G 7/05 Ocean thermal energy conversion
F24J 2 Use of solar heat
F24J 3 Other production or use of heat, not derived from combustion
F24S Solar heat collectors; solar heat systems
F24T Geothermal collectors; geothermal systems
F26B 3/28 Drying solid materials or objects by processes involving the application of heat by

radiation, e.g. from the sun

GREY

Y02 E20 Combustion technologies with mitigation potential
Y02 E50 Technologies for the production of fuel of non-fossil origin

FOSSIL

C10 G1 Production of liquid hydrocarbonmixtures from oil-shale, oil-sand, or non-melting
solid carbonaceous or similar materials, e.g. wood, coal

C10 L1 Fuel
C10 J Production of fuel gases by carburetting air or other gases
F01 K Steam engine plants; steam accumulators; engine plants not otherwise provided

for; engines using special working fluids or cycles
F02 C Gas-turbine plants; air intakes for jet-propulsion plants; controlling fuel supply in

air-breathing jet-propulsion plants
F22 Steam generation
F23 Combustion apparatus; combustion processes
F27 Furnaces; kilns; ovens; retorts

Source: Adapted from Dechezleprêtre et al. (2017), using information from the International Patent Classifi-
cation and Cooperative Patent Classification.
In this table, the patent classes starting with Y are from the Cooperative Patent Classification (CPC), all other
codes are from the International Patent Classification (IPC).
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B.2 Mapping of investor types

Table B.3 provides an overview of themapping of shareholder types. The shareholders are

identified by their own BvD ID (if available). In order to classify them into di�erent shareholder

types, both their NACE code and the “entity type” asigned by BvD are used. Each of the

classifications have their own advantages and disadvantages. NACE codes generally allow for

a good distinction between private financial services institutions, such as banks, investment

funds, or insuranceandpension funds. However, outsideof the financial services classification,

NACE codes become less useful: many foundations, private funds or even cooperative banks

are classified as “Activities of membership organizations”. The shareholder types provided by

BvD, on the other hand, identify these institutions more clearly. Moreover, they are generally

useful to distinguish between individuals and institutional investors, and to di�erentiate

between government investors and private ones. Within private investment organizations, the

attribution of types in the BvD classification seems somewhat arbitrary (e.g. pension funds

are sometimes coded as “insurance companies”, and BlackRock is labelled “Bank”). Therefore,

the financial sector classification follows, and slightly adapts, the approach from Battiston

et al. (2017):

– The Orbis classification is used in case of “Government” and “Foundation”.

– In all other cases, the NACE classification is used, if it is available and if it is equal to
some financial services-related sector (for the mapping, see Table B.3).

– If no NACE code is available or if it is not related to financial services, the Orbis classifica-
tion is used (for the mapping, see Table B.3).

– Investors which do not belong to the institutional ownership category are dropped from
the analysis:

• In case the Orbis classification lists them as “Industrial Company”, “self-owned”, or

“One or more known individuals or families”, observations are excluded.

• In case the Orbis classification lists them as “Other unnamed private shareholders” or

“Other unnamed shareholders”, they are excluded if there is no NACE code available

(these o�en appear to be unclassified funds or investment vehicles).
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Table B.3 : Mapping of shareholder types

Type NACE Rev. 2 4-digit
codes

BvD Entity types

Bank 6410-6419 Bank
Insurance and Pension funds 6510-6539, 6620-6629 Insurance company; Mutual&

Pension Fund/ Nominee/ Trust/
Trustee

Investment fund 6420-6439, 6491, 6612,
6630-6639

Hedge fund; Private equity

Other Credit Institutions 6492, 6499 Venture Capital
(Other) Financial Services 6611, 6619, 6400 Financial Company
Government Government
Foundation Foundation

Notes: For types in normal font, the NACE code was given precedence; only if it was missing or equal to
none of the listed codes, the BvD classification was used.
For types in italics, the BvD classification was used regardless of the NACE classification code.

Firms are assigned dummies whenever a Global Ultimate Owner for them is reported who

controls more than 50% or more than 25%, respectively, and if this Global Ultimate Owner is

di�erent from the firm itself. Another dummy indicates that a firm is self-owned.

B.3 Background on climate exposure variable

Publicly listed firms are required to report their quarterly earnings; in conjunction with these

reportings, firmmanagers hold conference calls with investors and analysts. Sautner et al.

(2020b) have developed a method – and corresponding dataset – to measure firm-specific

climate change exposure by the use of transcripts of these conference calls. The conference

calls are considered to play an important role in reducing information asymmetry between

managers and investors, and have been described as “more or less routine” (Hollander et al.

2010) for already quite a while. Transcripts of the conference calls are available from financial

data providers such as Thomson Reuters.

Importantly, a conference call consists of twoparts: a presentationbymanagement is followed

by a question-and-answer round. In the first part, managers can choose what information

to disclose; in the second part, call participants can ask questions also about issues which

were not disclosed previously. Therefore, conference calls provide an important source of

information beyond voluntary disclosure such as in sustainability reports.
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The conference calls can cover virtually any topic of relevance to the firm at the time. With the

help of the transcripts andmachine learning algorithms, certain words or expressions can be

identified and assigned to a topic of interest. Sautner et al. (2020b) develop and use a set of

signal word combinations (termed “bigrams”) related to climate change and climate policy to

derive a measure of “climate change exposure” at firm-year level.

Similar methods have been used to identify risks and opportunities that firms face in various

dimensions, such as political risk (Hassan et al. 2019), uncertainty about Brexit (Hassan et al.

2020b), or even Covid-19 (Hassan et al. 2020a). In this literature, the term “exposure” is used

to describe “the proportion of the conversation during the conference call that is centered on

a particular topic” (Sautner et al. 2020b).1

B.4 Further summary statistics

Table B.4 : Average patent numbers per firm and year

Green Fossil All patents
Raw patent count 2.47 3.08 89.93

Family-size-weighted patent count 8.85 10.97 287.35

Average family size per patent 3.58 3.56 3.20

Citation-weighted patent count 1.25 1.50 150.85

Average citations per patent 0.51 0.49 1.68

Notes: The table showsaverages over all sample years. Due to the lagged
structure of the estimation, the sample period for patents is 2010-2018.
Note that in this paper’s definition, family size is at least equal to 1 (each
patent is applied for at least once in one country). Citations, on the other
hand, can be zero.

1 This use of the termexposure di�ers fromhow the term “risk exposure” is defined in the asset pricing literature,
see Hassan et al. (2019) for a discussion.
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Table B.5 : Mean number of fossil, green and all patents, family size and citations over time

Year Green
patent
count

Green
patent
family
size

Green
patent
cita-
tions

Fossil
patent
count

Fossil
patent
family
size

Fossil
patent
cita-
tions

All
patents
count

All
patents
family
size

All
patents
cita-
tions

2010 3.58 14.84 2.04 3.49 13.99 2.23 109.68 399.60 281.11
2011 3.90 14.92 2.38 3.80 15.13 2.96 109.02 389.46 273.82
2012 4.07 15.33 2.27 4.02 15.04 2.90 119.81 413.71 273.22
2013 3.12 10.95 1.92 4.08 15.76 2.26 116.61 390.00 197.16
2014 2.65 9.45 1.48 4.01 13.62 1.74 106.75 345.31 148.77
2015 2.45 7.81 0.79 3.94 12.84 1.14 107.25 320.00 124.30
2016 1.67 5.14 0.48 2.67 8.47 0.52 75.05 205.93 77.61
2017 0.97 2.83 0.22 1.53 4.33 0.15 51.10 120.74 28.39
2018 0.35 0.84 0.03 0.51 1.17 0.03 24.28 49.24 4.45
Average 2.47 8.85 1.25 3.08 10.97 1.50 89.93 287.35 150.85

Notes: Numbers are shown for patents applied for in the given year. Patent numbers are based on a sample
of publicly listed firms which filed at least one patent classified as green or fossil in the sample period. Due
to the lagged structure of the estimation, the sample period for patents is 2010-2019.

Table B.6 : Summary statistics for di�erent investor types

Mean Standard deviation Minimum Maximum
Gov. share 3.07 5.97 0 89.08

PRI sig. share 8.83 8.90 0 52.26

Ins. and PF share 6.45 7.18 0 81.35

Domestic share 27.73 24.99 0 100.00

Big 3 share 5.97 6.48 0 30.25

Observations 8.622
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Table B.7 : Summary statistics for climate change exposure sample

Mean Standard deviation Minimum Maximum
CC Exposure 1.988 3.353 0 37.648
CC Regulatory Exp. 0.098 0.448 0 11.111
CC Opportunity Exp. 0.898 1.887 0 26.037
All patents 125.64 411.11 0 7,975
Fossil patents 3.91 24.45 0 708
Green patents 3.16 23.10 0 794
Patent stock 844.7 2471.1 0 36324.3
Fossil patent stock 25.6 156.9 0 4404.1
Green patent stock 20.2 137.0 0 3,845.9
Spillover 179,300.7 151,570.5 0 584,380.8
Fossil spillover 4,625.5 5,829.4 0 24,151.9
Green spillover 3,094.1 5,161.2 0 21,157.4
R & D expenditures, in thousand USD 2,307,401 1.03·1011 0 6.43·1012
IO share, in percent 56.21 24.57 0 100

Notes: CC Exposure is “Climate Change Exposure”, CC Regulatory Exp. is “Climate Change Regulatory
Exposure”, and CC Opportunity Exp. is “Climate Change Opportunity Exposure” as constructed in Sautner
et al. (2020a); all climate exposure variables are scaled by the factor 1000 compared to the Sautner et al.
(2020a) dataset.
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B.5 Further estimation results

Table B.8 : Family size and grey patents

(1) (2) (3)
Dep. var. Green family size Fossil family size Grey patents

L.IO share 0.000346 -0.00364 -0.00489
(0.0391) (0.0276) (0.140)

L.Own stock fossil, FS 0.105∗∗∗ 0.887∗∗∗

(0.0385) (0.0858)
L.Own stock green, FS 1.034∗∗∗ 0.0332

(0.0838) (0.0672)
L.Green spillover, FS 0.0104 -0.0205

(0.598) (0.417)
L.Fossil spillover, FS -0.0304 0.00764

(0.598) (0.414)
L.R and D exp. 0.128 0.165 0.330

(0.166) (0.123) (0.602)
L.Own stock fossil 0.378

(0.246)
L.Own stock green -0.271

(0.329)
L.Own stock grey 1.896∗∗∗

(0.231)
L.Green spillover -0.153

(2.935)
L.Fossil spillover -0.730

(2.328)
L.Grey spillover 0.810

(0.756)

Observations 8622 8622 8622

Notes: All columns: Poisson control function estimations (first stage not shown). Robust standard errors in
parentheses. Knowledge stocks, spillovers and R&D expenditures are in logs. Estimation period is 2009-2018.
All regressions include year fixed e�ects and firm fixed e�ects using the BGVRmethod. Significance levels are
indicated as ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B.9 : Ownership concentration and two-year lag

(1) (2) (3) (4)
Dep. var. Green patents Fossil patents Green patents Fossil patents

L.Top 5 share -0.0629 -0.0282
(0.148) (0.102)

L2.IO share 0.0673 -0.00383
(0.0705) (0.0414)

L.Own stock fossil 0.101∗ 1.283∗∗∗ 0.170∗∗ 1.295∗∗∗

(0.0536) (0.0780) (0.0768) (0.124)
L.Own stock green 1.435∗∗∗ 0.00734 1.575∗∗∗ -0.00861

(0.0715) (0.0502) (0.154) (0.128)
L.Green spillover 0.0742 -0.00195 1.488 -0.126

(0.0834) (0.0749) (1.502) (0.867)
L.Fossil spillover -0.0590 -0.0150 -1.463 0.119

(0.0813) (0.0742) (1.503) (0.867)
L.R and D exp. 0.0763 0.123∗∗ -0.170 0.162

(0.0825) (0.0624) (0.309) (0.189)

Observations 8622 8622 7345 7345

Notes: All columns: Poisson control function estimations (first stage not shown). Robust standard errors in
parentheses. Knowledge stocks, spillovers and R&D expenditures are in logs. Estimation period is 2009-2018.
All regressions include year fixed e�ects and firm fixed e�ects using the BGVRmethod. Significance levels are
indicated as ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B.10 : Special investor types and green patenting, full table

(1) (2) (3) (4) (5)

L.Gov. share 0.0342
(0.0882)

L.PRI sig. share 0.0343
(0.0796)

L.Ins.& pens. fd. share -0.121
(0.298)

L.Domestic owner share -0.0210
(0.0505)

L.Big 3 share 0.0257
(0.0610)

L.Own stock green 1.431∗∗∗ 1.452∗∗∗ 1.445∗∗∗ 1.421∗∗∗ 1.444∗∗∗

(0.0720) (0.0851) (0.0908) (0.0769) (0.0775)
L.Own stock fossil 0.110∗∗ 0.113∗∗∗ 0.0909 0.0850 0.111∗∗

(0.0437) (0.0425) (0.0793) (0.0851) (0.0435)
L.Green spillover 0.0777 0.259 -0.270 -0.251 0.182

(0.0805) (0.416) (0.877) (0.807) (0.246)
L.Fossil spillover -0.0294 -0.235 0.320 0.322 -0.160

(0.0954) (0.434) (0.923) (0.902) (0.268)
L.R and D exp. 0.0997∗∗∗ 0.0712 0.161 0.176 0.0755

(0.0356) (0.0937) (0.119) (0.162) (0.0874)

Observations 8622 8622 8622 8622 8622

Notes: Dependent variable: Green patents. All columns: Poisson control function estimations (first stage not
shown). Robust standard errors in parentheses. Knowledge stocks, spillovers and R&D expenditures are in
logs. Estimation period is 2009-2018. All regressions include year fixed e�ects and firm fixed e�ects using the
BGVRmethod. Significance levels are indicated as ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

159



B Appendix to Chapter 2

Table B.11 : Special investor types and fossil patenting

(1) (2) (3) (4) (5)

L.Government share 0.0171
(0.0629)

L.PRI sig. share 0.0135
(0.0539)

L.Ins.& pens. fd. share -0.0858
(0.186)

L.Domestic owner share -0.0101
(0.0362)

L.Big 3 share 0.0120
(0.0412)

L.Own stock green -0.00700 0.00880 0.00566 -0.0218 0.00789
(0.0340) (0.0608) (0.0374) (0.0710) (0.0528)

L.Own stock fossil 1.289∗∗∗ 1.289∗∗∗ 1.249∗∗∗ 1.278∗∗∗ 1.289∗∗∗

(0.0742) (0.0700) (0.124) (0.0904) (0.0699)
L.Green spillover 0.00426 0.0720 -0.249 -0.156 0.0513

(0.0729) (0.280) (0.552) (0.582) (0.167)
L.Fossil spillover -0.00563 -0.0854 0.250 0.164 -0.0662

(0.0853) (0.293) (0.579) (0.646) (0.184)
L.R and D exp. 0.134∗∗∗ 0.123∗ 0.170∗∗ 0.170 0.122∗

(0.0296) (0.0699) (0.0721) (0.113) (0.0653)

Observations 8622 8622 8622 8622 8622

Notes: Dependent variable: Fossil patents. All columns: Poisson control function estimations (first stage not
shown). Robust standard errors in parentheses. Estimation period is 2009-2018. All regressions include year
fixed e�ects and firm fixed e�ects using the BGVRmethod. Significance levels are indicated as ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table B.12 : Institutional investors and totel patents, full table

(1) (2) (3) (4) (5) (6)
Model Poisson Poisson Poisson Poisson Poisson Neg. bin.
Dep. var. Patents Patents Patents Family size Citations Patents
L.IO share 0.0114∗∗∗ 0.0114∗∗ 0.0110∗ 0.0129∗∗ -0.0258 0.00671∗∗

(0.00348) (0.00481) (0.00603) (0.00624) (0.0177) (0.00310)
L.Own patent stock 1.274∗∗∗ 1.274∗∗∗ 1.270∗∗∗ 1.483∗∗∗

(0.0374) (0.0313) (0.0370) (0.0340)
L.Own patent stock, FS 1.109∗∗∗

(0.0540)
L.Own patent stock, cit. 1.318∗∗∗

(0.0758)
L.Total spillover -0.0174∗ -0.0174 -0.0154 -0.0167

(0.00902) (0.0161) (0.0172) (0.0104)
L.Total spillover, FS -0.00957

(0.0224)
L.Total spillover, cit. 0.0989

(0.0633)
L.Tobin’s Q 0.0257

(0.0276)
L.R and D exp. 0.0132 0.0132 0.0179 0.0447 0.128∗∗ 0.0358

(0.0277) (0.0374) (0.0436) (0.0467) (0.0610) (0.0228)
Clustered SEs no yes yes yes yes yes
Add. control no no yes no no no
Observations 8622 8622 8040 8622 8622 8622

Notes: All estimations use a control function approach (first stage not shown). “Add. control” refers to the
inclusion of Tobin’s q as an additional control variable. Robust standard errors in parentheses. In the Poisson
control function estimations starting in column 2, standard errors are two-way clustered at the 4-digit NACE
code and country level. In the negative binomial control function estimation, standard errors are clustered
at the 4-digit NACE code level. Knowledge stocks, spillovers and R&D expenditures are in logs. Estimation
period is 2009-2018. All regressions include year fixed e�ects, and firm fixed e�ects using the BGVRmethod.
Significance levels are indicated as ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B.13 : Baseline results with climate exposure sample

(1) (2)
Green patents Fossil patents

L.IO share -0.00157 0.00760
(0.0272) (0.0236)

L.Own stock fossil 0.0609 1.335∗∗

(0.0567) (0.120)
L.Own stock green 1.496∗∗ 0.00494

(0.114) (0.134)
L.Green spillover -0.0467 0.0551

(0.293) (0.237)
L.Fossil spillover 0.0525 -0.0488

(0.363) (0.309)
L.R and D exp. 0.114∗∗ 0.133∗∗

(0.0399) (0.0469)
Observations 3972 3972

Notes: All columns: Poisson control function estimation (first stage not shown). Robust
standard errors in parentheses, two-way clustered at the 4-digit NACE code and country
level. Estimation period is 2009-2018. All regressions include year fixed e�ects, and firm
fixed e�ects using the BGVR method. Significance levels are indicated as ∗ p < 0.1, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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C.1 Sectors

Table C.1 : Sector description and numbers

Sector number Sector description

1 Agriculture, forestry and fishing
2 Mining and quarrying
3 Food, beverages, textiles, leather
4 Wood, paper, publishing, broadcasting, arts, entertainment, recreation
5 Coke and refined petroleum products
6 Chemicals and pharmaceuticals
7 Rubber, plastic and glass products and ceramics
8 Metals & metal products, machinery & equipment, and other products
9 Water supply, sewerage, waste management and remediation
10 Electricity from coal
11 Electricity from gas
12 Electricity from hydro
13 Electricity fromwind
14 Electricity from biomass and waste
15 Electricity from solar (PV and thermal)
16 Electricity nec (incl. nuclear, oil); steam & hot water
17 Transmission of electricity
18 Distribution and trade of electricity
19 Manufacture of gas; distribution of gaseous fuels throughmains
20 Construction
21 Wholesale and retail trade, repairs, including motor vehicles
22 Hotels and restaurants
23 Transport, warehousing, post and telecommunications
24 Financial and insurance services
25 Real estate activities
26 Rental & leasing; other business services
27 Computer programming and information service
28 Scientific research & development
29 Public administration & defense, social security
30 Education
31 Human health and social work activities
32 Activities of membership organizations and other personal service activities
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Table C.2 : Available regional gross value added values

Aggregated
sector

Corresponding
CPA classifications

Sector description

A 1-3 Agriculture, forestry and fishing
B-E 5-39 Industry excluding construction
C 10-33 Manufacturing
B, D, E 5-9, 35-39 Industry excluding construction andmanufacturing. B: Mining and

quarrying; D: Electricity, gas, steam and air conditioning supply;
E: Water supply; sewerage, waste management and remediation
activities

F 41-43 Construction
G-J 45-63 G: Trade, repair of motor vehicles; H: Transportation and storage; I:

accommodation and food services; J: Information and communica-
tion

K-N 64-82 K: Financial and insurance activities; L: real estate activities; M: Pro-
fessional, scientific and technical activities; N: Administrative and
support service activities

O-T 84-98 O: Public administration and defense, social security; P: Education;
Q: Health and social work; R: Arts, entertainment and recreation; S:
Other service activities; T: Activities of households as employers
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C.2 Details on disaggregation of capital stocks

For the electricity-producing technologies, data on installed capacity are from ENTSO-E

(2017b) and (for renewables) IRENA (2016a). Data on installation costs were combined (and

sometimes averaged) from various sources (Nitsch et al. 2012; AEE 2012; Breyer et al. 2013;

Dumont and Keuneke 2011; Blesl et al. 2012; Kost et al. 2013; Hirschl et al. 2015; Hobohm and

Mellahn 2010; Peter et al. 2013; Photovoltaik-Guide 2017; Sachverständigenrat für Umweltfra-

gen 2011; Pahle et al. 2012; Bickel et al. 2012).

Data on the length of electricity transmission lines were obtained from ENTSO-E (2017a).

Information from ACER (2015) and ICF Consulting (2003) was combined to derive installation

costs per kilometer. For electricity distribution, data on the length of distribution networks

come from Vaillancourt (2012), and data on the investment costs are from Deutsche Energie-

Agentur (2012).

In the heat sector, Eurostat (2016b) provides information on the amount (energy content) of

derived heat available for final consumption. The data on investment cost per heat demand

came from Grözinger et al. (2013). Finally, data on gas distribution networks was obtained

from Eurogas (2008), while the cost per km is an estimate based on press reports on costs of

the German distribution network at di�erent pressure levels, scaled by the shares of these

pressure levels.
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C.3 Scenarios

Table C.3 : Scenario description

Green scenario Business as usual scenario

Low price path for fossil energy sources on the
global market

High price path for fossil energy sources on the
global market

Return to the historical interest rate level in Ger-
many

Moderate recovery of interest rates in Germany

Strong increase of the Gross Domestic Product in
Germany

Moderate increase of the Gross Domestic Product
in Germany

Increasing globalisation, increasing trade relations
with a global paradigm shi� on sustainability

Increasing globalisation, increasing trade relations
without common environmental and energy tar-
gets

Higher population (weak decrease), higher migra-
tion balance

Higher population (weak decrease), higher migra-
tion balance

Societal value orientation: trend towards a sustain-
able materialism

Societal value orientation: trend towards di�eren-
tiation

Trend towards a decentralised energy production
and storage

Trend towards a mixed structure in energy produc-
tion and storage

Preference for technology-specific economic in-
struments for the energy sector (e.g., EEG)

Preference for technology-specific economic in-
struments for the energy sector (e.g., EEG)

Higher policy stability for the energy sector Constant level of policy stability for the energy sec-
tor

Redistribution of the EU Common Agricultural Pol-
icy funds: More funding for environmental protec-
tion in agriculture

Continuation of the EU Common Agricultural Pol-
icy

Intensified environmental and resource protection
in Germany

Constant level of activity in environmental policy
in Germany

Comparatively low global greenhouse gas concen-
tration (temperature increase 2046-2065 probably
between 0.4◦C and 1.6◦C)

Medium level of global greenhouse gas concentra-
tion (temperature increase 2046-2065 probably be-
tween 0.9◦C and 2◦C)

Source: Musch and Streit (2017)
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C.4 Additional �gures

Figure C.1 : Installed capacity for heat generation by scenario, yearly average
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Figure C.2 : E�ects on employment by category and region, BAU SMALL scenario
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Figure C.3 : E�ects on employment by category and region, BAU LARGE scenario
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Figure C.4 : E�ects on employment by category and region, GREEN SMALL scenario
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Figure C.5 : E�ects on value added for selected sectors, BAU SMALL scenario
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Notes: For a better visualization some sector descriptions have been shortened. See Appendix C.1 for the full
sector descriptions.
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Figure C.6 : E�ects on value added for selected sectors, BAU LARGE scenario
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Notes: For a better visualization some sector descriptions have been shortened. See Appendix C.1 for the full
sector descriptions.
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Figure C.7 : E�ects on value added for selected sectors, GREEN SMALL scenario
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Notes: For a better visualization some sector descriptions have been shortened. See Appendix C.1 for the full
sector descriptions.
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Figure C.8 : Aggregated e�ects on employment by category, selected sectors and aggregated region, BAU SMALL
scenario
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Notes: For a better visualization some sector descriptions have been shortened. See Appendix C.1 for the full
sector descriptions.
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Figure C.9 : Aggregated e�ects on employment by category, selected sectors and aggregated region, BAU LARGE
scenario
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Notes: For a better visualization some sector descriptions have been shortened. See Appendix C.1 for the full
sector descriptions.
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Figure C.10 : Aggregated e�ects on employment by category, selected sectors and aggregated region, GREEN
SMALL scenario
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Notes: For a better visualization some sector descriptions have been shortened. See Appendix C.1 for the full
sector descriptions.
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