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Abstract 
 
International specialization is a strong driver of sectoral productivity. This specialization 
is not only characterized by the diversity of final goods, but also by the variety of inter-
mediate inputs. Thereby the importance of inputs is not only demonstrated by its large 
shares in gross output, but also as intermediate inputs constitute important parts of higher 
value products on later stages of assembly. At that, intermediate inputs encapsulate 
innovation efforts of upstream sectors facilitating technology diffusion into the wider 
economy. Due to the usual assumption of technology being exclusively embodied in 
capital, this paper analyzes the importance of embodied technology in intermediate 
inputs as well as the validity of productivity effects stemming from embodied tech-
nology diffusion on sectoral level. Therefore, based on the idea of Romer’s model of the 
variety of inputs, two hypotheses are formally tested. The first hypothesis postulates 
embodied technological change in high-tech inputs, while the second hypothesis 
assumes that embodied technology diffusion increases aggregate sectoral productivity 
via use of high-tech inputs. For a sample of 12 OECD countries over the 1995–2007 
period, the empirical evidence of this paper shows that there is indeed a bias in techno-
logical change toward high-tech inputs and embodied technology diffusion is a source 
of sectoral productivity increases. However, the effect is more pronounced for goods-
producing sectors than for services. 
 
JEL Code: D57, E23,O33, O47. 
Keywords: Technology diffusion, augmenting technological change, intermediate 
inputs, productivity. 

 
 
 
 
 

Thomas Strobel 
Ifo Institute – Leibniz Institute  

for Economic Research 
at the University of Munich 

Poschingerstr. 5 
81679 Munich, Germany 

Phone: +49(0)89/9224-1465 
strobel@ifo.de 

 



1. Introduction

Intermediate inputs play an increasingly important role in production processes and value
chains of industrialized economies. Thereby intermediates are defined as products, which
are not consumed as final output but are further used in the production of other goods
and services. While value added made up around 51 percent of gross output on average
in the EU-15 countries during the mid–1980s to the mid–1990s, its importance steadily
declined from its peak in 1993 at almost 52 percent to around 47 percent in 2007. On
the contrary, the share of intermediate inputs increased correspondingly.

However, the importance of intermediate inputs is not only demonstrated by their high
shares in the generation of gross output, but also due to the fact that modern economies
are more and more characterized by strong sectoral interconnection via the channel of
intermediate inputs. Especially since intermediates are important parts of higher value
products on later production stages, they encapsulate interrelations through which inno-
vation and technology diffuse throughout the economy. Long and Plosser (1983) and Hor-
vath (2000), for example, show that sectoral shocks can spread through an input-output
structure and give rise to fluctuations in aggregate total factor productivity (TFP).

These models point out that the linkages among sectors, represented by intermediate in-
puts, contribute to aggregate TFP movements. Besides the sectoral dependence of inter-
mediate inputs, intermediates become increasingly important in world trade. According
to an OECD study by Miroudot et al. (2009) intermediate inputs in 2009 represented
56% of goods trade and 73% of services trade, and thus dominated international trade
flows. Hence, sectoral output analyis that solely focuses on primariy inputs of capital
and labor is missing an essential part regarding our understanding of output generation
and technology diffusion.

The idea of this paper is to explicitly take into account intermediate inputs and their
role in diffusing technology. It is assumed that R&D-intensive upstream sectors produce
high-tech inputs, which can be used in the production process of downstream as well
as upstream sectors. Since R&D-intensive upstream sectors are more heavily engaged
in R&D activities than other upstream sectors, intermediate inputs of R&D-intensive
upstream sectors embody more technology than inputs produced by those sectors which
are not R&D-intensive. Thereby embodied technology refers to an increase in the variety
of but also to improvements in the quality of inputs, similar as in case of capital goods
(OECD, 2001b; Jorgenson, 1966). It is expected that spillover effects from utilization of
high-tech inputs supplied by R&D-intensive upstream sectors to other sectors positively
affect other sectors’ productivity growth (embodied technology diffusion).

Recent studies that consider the incorporation of intermediate inputs into the produc-
tion process are Jones (2011) and Moro (2011). While Moro only allows for capital- and
labor-augmenting technological change, Jones sets up a model that additionally accounts
for intermediate-augmenting technological change. In their analyses both authors con-
sider a linkage between intermediate inputs and productivity growth, where the latter is
measured either in terms of total factor or labor productivity. While Moro argues that
increasing inputs generated a negative impact on Italy’s total factor productivity (TFP),
Jones shows that the share of intermediates can provide a multiplier on the productivity
level that is able to explain cross-country differences in the level of TFP.

2



In another study Ciccone (2002) analyzes the effect of industrialization on aggregate
output and TFP. In Ciccone’s model, new technologies adopted with industrialization
are more intensive in intermediate goods. When an increase in productivity occurs in
sectors producing intermediate goods, final producers benefit from that increase and
become more productive themselves. As new technologies are more intensive in interme-
diate goods, it follows that industrialization provides a TFP increase. Similar to Jones,
Ciccone exploits the multiplier effect triggered by intermediate goods first, which was
first described in Hulten (2002).

On contrary, in Moro’s model the share of intermediate goods does not necessarily gener-
ate a multiplier on the productivity level, when neutral technological change is assumed to
be solely embodied in capital and labor. In his model without intermediates-augmenting
technological change, the share of intermediate goods provides only a level effect on TFP,
inversely related to the level of the share. While all of the previously mentioned papers
focus on aggregate intermediates, this paper provides an new view by analyzing the link-
age between two different types of intermediate inputs and technological change, and
their effect on the productivity performance of sectors. Moreover, the study explicitly
allows for parameter heterogeneity among two types of broad industry groups, which are
the goods-producing and the services sectors.

Although economic theory has accorded great importance to the role of capital in tech-
nological change and economic growth, and much new technology is in fact embodied
in the capital goods (machinery and structures) that industries purchase to expand and
improve production (Jorgenson, 1966), this study will allow for embodied technology
in intermediates in the first place. The role of capital investment in the diffusion of
technology among industries is straight forward as final products, i.e. machinery and
equipment, embody research and development performed by the manufacturing sector
and other sectors obtain access to most of that research through purchase of such capital
equipment.

In order to satisfactorily evaluate the determinants of output and productivity, however,
it is necessary to consider the diffusion of technology through intermediate goods as
well. Empirical studies of the relative impact of capital and intermediate inputs on
productivity have provided very diverse results. Terlecky (1974), for example, reported
separate significant effects for research contained in capital and research contained in
materials for manufacturing industries; however, the capital effect was much greater. In
non-manufacturing sectors, research embodied in materials had an effect but, surprisingly,
research contained in capital did not. Subsequently, Sveikauskas (1981) and Scherer
(1982) report extremely high returns for purchased capital, but none for intermediate
inputs (materials), while other results in Scherer’s work find significant positive effects
for purchase of research through materials. Moreover, Griliches and Lichtenberg (1984)
conclude that the influence of R&D embodied in purchases from other sectors is “weak
and unstable over time”.

As the paper analyzes the importance of embodied technology in intermediate inputs as
well as the validity of embodied technology diffusion on sectoral productivity, two main
hypotheses based on the idea of Romer’s model of the variety of inputs are formally
tested. The first hypothesis, HA, postulates that there is embodied technological change
in intermediate inputs, especially in high-tech input. The validity of this hypothesis
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depends on the empirical evidence of technology bias toward high-tech inputs. The
second hypothesis, HB , postulates given that there is embodied technological change in
high-tech inputs that there is embodied technology diffusion that increases aggregate
productivity via use of such high-tech inputs in firms’ production process. The validity
of this hypothesis will be formally tested by focusing on aggregate productivity effects for
subsamples of downstream sectors in goods-producing and services sectors. The results
show that for a sample of 12 OECD countries there is indeed a bias in technological
change toward high-tech inputs (hypothesis HA), whereas the effect is more pronounced
for goods-producing sectors. Also, there is confirming empirical evidence of productivity
increases via embodied technology diffusion in goods-producing sectors (hypothesis HB).

The paper is organized as follows. Section 2 provides the theoretical underpinning for the
interaction of productivity and intermediate inputs derived from a steady state equation
of intermediate inputs. Section 3 outlines the data employed for the estimation strategy,
which is demonstrated in Section 4. Section 5 then provides the estimation results
for Cobb-Douglas and translog production specifications, while robustness tests of the
estimated specifications are conducted in Section 6. It is especially the robustness section
that will speak to the validity of both hypotheses. Section 7 discusses potential drawbacks
of the empirical strategy, while Section 8 concludes.

2. Theoretical Underpinning

The model assumes that the economy consists of a number sectors i, where each sector
produces a final good, an investment good, and/or an intermediate good. The produc-
tion output of sector i is Yi measured as gross output, which is produced by employing
capital Ki (measured as capital stock), labor Li (measured as hours worked), and inter-
mediate inputs purchased either within the same sector or from other sectors. Regrading
intermediate inputs the model allows for a separation into high-tech inputs Hi (pro-
duced by R&D-intensive sectors) and non-high-tech or ordinary inputs Mi (produced by
non-R&D-intensive sectors). Given these input factors the production function has the
following form:

Yi =
[
(AKKi)

α(ALLi)
β
]1−θ1−θ2

(AHHi)
θ1(AMMi)

θ2 (1)

where Al for l ∈ (K,L,H,M) represents input-specific technology parameters, while α
and β are the input elasticities of capital and labor. Correspondingly, θ1 and θ2 are the
input elasticities of high-tech and non-high-tech inputs, which also enter the production
process in terms of substitution parameters. The modeling of input-specific technology
parameters assumes that there is a bias in technological change toward capital, labor,
and intermediate inputs.1

In allowing intermediate inputs to differ by high-tech inputs, equation (1) follows the
idea of product variety introduced by Romer (1990), in which productivity is caused by
innovation created from new, but not necessarily improved, variates of input products.

1Besides the technology bias toward input factors, the substitution parameters θ1 and θ2 reflect an
intermediate bias in high-tech and non-high-tech inputs, respectively.
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Thus, the channel through which productivity increases occur is intermediate inputs used
in the production process of final output, whereas inputs embody new and/or better
technology (process innovation). Based on Romer’s idea of product variety in inputs,
equation (1) is an extension to the models of recent studies by Jones (2011) and Moro
(2011). More precisely, while Moro (2011) assumes embodied technological change in
capital and labor only, without allowing for technology changes in intermediate inputs,
the model of Jones (2011) specifies Hicks-neutral technological change augmenting in
all inputs equally. However, none of these studies differentiate intermediates inputs by
different types or sectoral R&D intensity.

In allowing inputs to differ by type depending on the R&D effort of sectors, the assump-
tion of a strictly exogenous technological change is dropped. As the Romer model – in
its basics – follows the idea of innovation-based growth models, it does no longer assume
that there is only capital (or other input) accumulation, but that it is the R&D effort
of upstream sectors that leads to the production of more productive high-tech inputs.
This generates directed technological change toward high-tech inputs, which contributes
to productivity growth in upstream as well as in downstream sectors through the mech-
anism of process innovation.

Continuing with equation (1) intra-sectoral firms solve the following maximization prob-
lem with respect to intermediate inputs:

max
Hi,Mi

{ p
[
(AKKi)

α(ALLi)
β
]1−θ1−θ2

(AHHi)
θ1(AMMi)

θ2

−rKi − wLi − pHHi − pMMi }
(2)

where p resembles the price of gross output products, pH is the price of high-tech inputs,
and pM the price of non-high-tech inputs. The prices of capital and labor are given by r
and w, respectively. For ease of calculation gross-output prices are set as the numeraire
and intermediate input prices equal those of the numeraire. In the empirical part later on,
intermediate input prices are employed for both types of inputs. Since the maximization
problem of the firm is static time subscripts are avoided.

Given the Cobb-Douglas production function of equation (1), the first-order conditions of
equation (2) with respect to the two intermediate inputs yields the following equilibrium
conditions:

θ1 =
Hi

Yi
(3)

θ2 =
Mi

Yi
(4)

Equation (3) and (4) highlight the direct relationship between the intermediate bias
reflected by the parameters θ1 and θ2, and the utilization of intermediate inputs per unit
of gross output. These results are similar to those of Moro (2011).

Substituting equation (3) and (4) into equation (1) the following steady-state represen-
tation of the production function is derived:

Yi = (AKKi)
α(ALL

β
i )(AHθ1)

θ1
1−θ1−θ2 (AMθ2)

θ2
1−θ1−θ2 (5)
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To theoretically investigate the relationship between different types of intermediate inputs
and productivity, a measure of productivity called the Solow residual or total factor
productivity (TFP) is calculated. This measure accounts for all those changes in output
that are not derived from the inputs of capital, labor, and intermediates, and thus reflects
changes in productivity induced by changes in technological change.

In standard growth-accounting exercises the measurement of TFP is derived from the
value-added concept, i.e. under the consideration of capital and labor only. However,
using value-added based concepts of TFP as a proxy of technological change is only valid,
if the value-added production function is separable from gross output. By this assumption
the role of technological change is restricted as it is assumed that technological change
only affects the usage of capital and labor, so that intermediate inputs cannot be a
source of improvements in productivity (Gollop, 1979). But empirical testing suggests
that there is no separability between the value-added function and intermediate inputs.
A study by Jorgenson et al. (1987) found that the conditions necessary and sufficient for
the existence of a sectoral value-added function did not exist in 40 out of 42 industries
analyzed.

Due to the evidence of non-separability in gross output and value added, TFP is derived
according to the gross-output concept:

TFPi =
Yi

(Kα
i L

β
i )1−θ1−θ2Hθ1

i M
θ2
i

(6)

Substituting gross output by equation (5) and using the steady-state representation for
the denominator of equation (6), sectoral TFP can be reformulated according to

TFPi =
(AKKi)

α(ALL
β
i )(AHθ1)

θ1
1−θ1−θ2 (AMθ2)

θ2
1−θ1−θ2

Kα
i L

β
i θ

θ1
1−θ1−θ2
1 θ

θ2
1−θ1−θ2
2

= AαKA
β
LA

γ
HA

δ
M

= f(Al)

(7)

where l ∈ (K,L,H,M), γ = θ1/(1 − θ1 − θ2), and δ = θ2/(1 − θ1 − θ2). Equation
(7) shows that TFP is determined by the different technological parameters Al. Since
all technological parameters, especially AH and AM , cannot be observed directly, the
overall impact of a change in intermediate inputs on TFP is undetermined and needs to
be estimated.

To estimate the impact of θ1 and θ2 on productivity, in the empirical strategy section
the unobserved AH and AM will be approximated by a time trend interacted with both
types of intermediate inputs, respectively. The same is performed for AK and AL and
both inputs K and L. This approach helps to identify whether technological change is
augmenting or saving in intermediate inputs. Given there is a positive and statistically
significant interaction between input shares and technological change, then the bias in
technological change is input augmenting, which can be attributed to embodied technol-
ogy. In case of a statistically significant negative interaction, the bias in technological
change is input saving. While an increase in input shares thus equals an increase in TFP
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given the bias is input augmenting, it decrease TFP in case of input-saving technological
change. If there is no statistically significant interaction, technological change does not
exhibit any kind of input bias and there is not effect on TFP from changing inputs.

Concerning the empirical part of the paper, the main focus will be to show that there
is indeed input-augmenting technological change that increased sectoral productivity. It
will be shown that this is most relevant for high-tech inputs in the goods-producing sec-
tors (hypothesis HA) and that embodied technology diffusion particularly affects goods-
producing sectors (hypothesis HB).

3. Data

Regrading the data, I start with employing gross output, capital stocks, hours worked
by persons engaged, and aggregate intermediate inputs provided by the socio-economic
accounts of the newly released WIOD database for 30 SIC-coded sectors and 12 OECD
countries (Timmer, 2012). To separate intermediate inputs into high-tech and non-high-
tech, I use the inter-country industry-by-industry table provided by the World Input-
Output tables of the WIOD database (Timmer, 2012).

Separation of aggregate intermediate inputs into high-tech and non-high-tech is accom-
plished by applying the OECD technology intensity classification (OECD, 2011), where
the two categories of high-technology industries and medium-high-technology industries
are classified as R&D intensive accordingly. Due to its larger economy-wide R&D inten-
sity, the classification focuses on manufacturing industries. The grouping of industries
according to the OECD technology intensity classification is based on the OECD method-
ology to determine R&D intensities of sectors. This methodology is based on mainly two
indicators: i) R&D expenditures divided by value added and ii) R&D expenditures di-
vided by production. These indicators are provided by 12 OECD countries, which are
nearly equal to the 12 countries used in this study.2 A list of all used variables is provided
in Table A.1 in the Appendix. For a list of country and sector coverage see Table A.2
and Table A.3.

An empirical representation of θ1 and θ2 is shown in Figure 1. It shows the timely
development of θ1 and θ2 for industry averages by three groups of sectors. It becomes
obvious that it is especially the R&D-intensive goods-producing sectors that exhibit
the highest average share of high-tech inputs in gross output, followed by other goods-
producing sectors and services. On contrary, non-high-tech average shares are highest in
other goods-producing sectors. Services exhibit the second highest average share, while
the lowest shares are given for R&D-intensive goods-producing sectors.

While Figure 1 shows a stable development of high-tech input shares in gross-output
throughout, non-high-tech input shares exhibit a slight upward trend with a relatively
stable increase. The empirical development is particularly important as it is assumed
that in a steady state variables grow at some constant rate. In case of θ1 and θ2 the
descriptive statistics suggest the steady-state assumption is fulfilled why the application
of the model appears to be appropriate.

2The OECD countries resemble those 12 countries listed in Table A.2, except for Ireland and Spain,
which are replaced by Australia and the Netherlands in this study.
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Figure 1: Intermediate Shares in Gross Output

Notes: Goods-producing sectors include only manufacturing sectors. Services are market services. Av-
erages are across sectors within groups by year. Lb/ub denote lower/upper bound of the 95 percent
confidence interval.

Separating intermediate inputs by high-tech and non-high-tech inputs, Figure 2 shows
the importance of high-tech inputs by group of sectors. It becomes apparent that high-
tech inputs are most important in the R&D-intensive sectors themselves. The average
share in those sectors is at around 40 percent of total inputs. This may be explained by
the fact that R&D-intensive sectors, which are the producers of high-tech inputs on the
one hand, are their primary users on the other. However, non-high-tech inputs still play
a strong role in R&D-intensive sectors. In contrast, non-R&D-intensive sectors mainly
use non-high-tech inputs. Although the average share of high-tech inputs is below 10
percent in the latter, there is nevertheless a low diffusion of technology inputs among
those sectors. A similar picture emerges for services also showing a very low share of
high-tech inputs. Similar to non-R&D-intensive sectors, services are dominated by inputs
of lower technology standard.

Figure 2: The Importance of Different Types of Intermediate Inputs, by Sectors

Notes: Goods-producing sectors include only manufacturing
sectors. Services are market services.
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A more detailed descriptive analysis of sectors that use high-tech inputs is displayed in
Figure 3 and Figure 4. Figure 3 shows the share of high-tech inputs in total intermediates
separated by goods-producing sectors. As has already been pointed out in the previous
figure, it is especially the R&D-intensive sectors like chemicals, machinery, electrical &
optical equipment, and the transport equipment industries, which are strong purchasers
of high-tech inputs. It is those sectors that are by definition the producers of high-tech
intermediate inputs. But as can been see, there are also other non-R&D-intensive goods-
producing sectors purchasing high-tech inputs. Such industries are for example, rubber
& plastics and textiles.

Figure 3: The Importance of High-Tech Intermediate Inputs, by Sectors

Notes: Goods-producing sectors include only manufacturing
sectors.

With respect to the importance of high-tech intermediate inputs in services the previous
picture of Figure 2 is confirmed across a wide range of services sectors. Most of services
sectors have low shares of high-tech inputs in total intermediate inputs, except for the
sales & repair of vehicles industry (see Figure 4. Here the high-tech input share is
about 30 percent on average, which is due to the inputs and parts supplied by the
manufacturing transportation industry. Since the business of this particular industry
is mainly in replacing vehicle parts, the embodied technology hypothesis according to
which productivity is fueled through the use of high-tech inputs (process innovation) is
less convincing.

As has been shown in the descriptive statistics, there is a lot of sectoral idiosyncrasies
that should be accounted for in the econometric analysis of high-tech inputs and tech-
nological change. More precisely, an empirical strategy that employs a broad sample of
industry groups (like including all sectors of goods-producing or services) should account
for differences in the results contingent on the exclusion of a) the R&D-intensive sectors
(in case of goods-producing sectors) and b) the sales & repair of vehicles industry (in
case of services). Such a sensitivity analysis serves as a robustness check of the bias of
empirical estimates and will be employed in the paper later on.
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Figure 4: The Importance of High-Tech Intermediate Inputs, by Sectors

Notes: Services are market services.

4. Empirical Strategy

4.1. Accounting for Technological Change in a Cobb-Douglas Specification

The empirical strategy starts with log-linearization of equation (1) obtaining the following
estimable form

lnYi = A0 + α lnKi + β lnLi +
θ1

1− θ1 − θ2
ln θ1 +

θ2
1− θ1 − θ2

ln θ2 (8)

where A0 = α lnAK +β lnAL+θ1/(1−θ1−θ2) lnAH +θ2/(1−θ1−θ2) lnAM . Since the
factors’ marginal products need not necessarily correspond to the observable factor prices,
the elasticities of intermediate input shares will be estimated as well. Since the estimation
of different types of gross-output production functions enables the analysis of different
aspects with respect to technological change and the technology bias toward intermediate
inputs, the subsequent analysis starts with a Cobb-Douglas before proceeding with a
translog production specification.

Assuming that technological change takes on the estimable form A = aeγtt approximating
A0 = lnA and that there is no explicitly modeled interaction between A and θ1 and θ2,
equation (8) can be rewritten into

lnYi = a0 + βK lnKi,t + βL lnLi,t + βθ1 ln θ1 + βθ2 ln θ2 + γtt+ εi,t (9)

where t is a time trend and γt is its unknown semi-elasticity to be estimated. The
parameter a0 = ln a resembles a constant, while εi,t is an error term assumed to be i.i.d.
According to the idea of standard growth-accounting exercises, which is formulated in
equation (7), sectoral TFP resembles the following identity:

TFP ≡ a0 + γtt+ εi,t (10)
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which includes all those changes in Yi not accounted for by the four factors,Ki, Li, θ1, and
θ2. While the estimated parameters of θ1 and θ2 reflect the bias in intermediate inputs for
generating gross output, a more detailed analysis of the impact of changes in intermediate
input shares on TFP is not feasible within this functional setting. Therefore a different
type of production function that enables the interaction between technological change
and intermediate inputs is needed, as is the case for a translog production function.

The translog production function, which was proposed by Christiansen et al. (1971, 1973),
represents a more flexible functional form that constitutes a generalization of the Cobb-
Douglas specification. Besides the possibility to account for input-biases in technological
change, another main advantage of the translog function is that, unlike the Cobb-Douglas
function, it does not assume such rigid premises as perfect substitution between input
factors or perfect competition on the input factors markets. But especially the latter
exerts a strong influence on the estimated TFP residual. The following section describes
the accounting of technological change for this specific functional form.

4.2. Accounting for Technological Change in a Translog Specification

Assuming that the production function is now of translog type and technological change
takes on a quadratic estimable form A = aeγtt+0.5γttt

2

approximating A0 = lnA as well
as the possibility of biases in all input factors, equation (8) can be rewritten into

lnYi = a0 + βK lnKi,t + βL lnLi,t + βθ1 ln θ1 + βθ2 ln θ2 + γtt+ 0.5γttt
2

+0.5βKK lnK2
i,t + 0.5βLL lnL2

i,t + 0.5βθ1θ1 ln θ21 + 0.5βθ2θ2 ln θ22

+βLK lnLi,t lnKi,t + βθ1K ln θ1 lnKi,t + βθ2K ln θ2 lnKi,t

+βθ1L ln θ1 lnLi,t + βθ2L ln θ2 lnLi,t

+βθ2θ1 ln θ2 ln θ1

+γtKt lnKi,t + γtLt lnLi,t + γtθ1t ln θ1 + γtθ2t ln θ2

+εi,t

(11)

where t and t2 reflect the quadratic time trend, while γt and γtt are the unknown semi-
elasticities to be estimated. The parameter a0 = ln a resembles a constant and εi,t
is the error term that is assumed to be i.i.d. Analogously to the Cobb-Douglas case,
sectoral TFP would be approximated by a0 + γtt + 0.5γttt

2 + εi,t. These estimated
technological parameters represent the neutral part of technological change. But since
the translog specification also allows for biases in technological change, it expands the
TFP measure displayed in equation (6) by different types of input-augmenting and/or
-saving technological change; hence, sectoral TFP additionally includes a non-neutral
part:

TFP ≡ a0+γtt+0.5γttt
2 +γtKt lnKi,t + γtLt lnLi,t + γtθ1t ln θ1 + γtθ2t ln θ2︸ ︷︷ ︸

non−neutral part

+εi,t (12)

It is especially this extension in technology parameters that is of particular importance
to answer the question whether technological change embodied in intermediate inputs
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affects TFP. While changes in TFP are derived from the partial derivative of equation
(12) with respect to time

∂TFP

∂t
= γt + γttt+ γtK lnKi,t + γtL lnLi,t + γtθ1 ln θ1 + γtθ2 ln θ2 (13)

the effect of a change in a specific type of intermediate input is derived according to

∂TFP

∂ ln θm
= γtθmt (14)

where m ∈ (1, 2).

All of the production functions are estimated by fixed-effects regression (within transfor-
mation) employing clustered standard errors. Besides being heteroskedasticity consistent,
the standard error estimates are robust to general forms of intra-sectoral correlation.

5. Estimation Results

The results of estimating equation (9) separated by the two sectoral groups of goods-
producing and services are provided in Table 1. Regarding the estimated elasticities of
capital (βK) and labor (βL) in case of goods-producing sectors, the results are in the
range of the expected magnitudes. While the elasticity of capital is slightly below 1/3,
that of labor is around 2/3. Both are estimated as highly statistically significant. In
contrast, high-tech intermediate inputs (βθ1) are estimated as statistically insignificant,
while non-high-tech inputs (βθ2) exhibit a significant elasticity, which is slightly above the
elasticity of capital. The time trend parameter (γt) that captures technological change is
also estimated statistically significant. These results suggest that in the goods-producing
sector and over the entire period of coverage Hicks-neutral technological change positively
affected gross output.

In case of services, the results are qualitatively similar. However, while the estimated
capital coefficient provides reasonable results, the gross-output elasticity with respect to
labor suggests to be less important compared to the case of goods-producing sectors.
On contrary, especially the elasticity of non-high-tech inputs, which is about twice the
size as in the case of goods-producing sectors, plays an important role in generating
gross output. High-tech inputs again are estimated statistically insignificant. Similar to
goods-producing sectors the positively estimated time trend suggests a positive effect of
Hicks-neutral technological change.

The results of Table 1, which are based on a Cobb-Douglas specification, suggest that
there is a direct increase of gross output by utilizing more non-high-tech intermediate
inputs in the first place. High-tech inputs and their embodied technological change show
no effect in this specification. As technological change is assumed to be Hicks neutral
and thus productivity increases originate from increases in technology that by definition
affect all inputs equally, there is no possibility to test whether sectoral productivity is
actually increased via a technology bias toward one of the specific inputs. But especially
the existence of technology bias would provide the evidence whether the hypothesis of
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Table 1: Growth Regressions by Sectoral Type, Cobb-Douglas Specification

Goods Producing Services

βK 0.204*** 0.272***
[0.054] [0.051]

βL 0.692*** 0.214***
[0.057] [0.067]

βθ1 -0.015 0.017
[0.047] [0.027]

βθ2 0.378** 0.622***
[0.157] [0.095]

γt 0.023*** 0.017***
[0.002] [0.002]

Constant 0.665 2.990***
[0.420] [0.295]

Observations 2184 1859
Within R2 0.57 0.73
# of clusters 168 144

Notes: Regressions are fixed-effects estimations controlling for time-
invariant country and industry effects. Robust standard errors in
brackets allow for heteroskedasticity and intra-sectoral correlated
standard errors. Significance levels: * significant at 10%; ** signifi-
cant at 5%; *** significant at 1%. Source: Author’s calculations.

embodied technology is a valid concept to explain increases in sectoral productivity (hy-
pothesis HA). It also lays the empirical foundation of embodied technology diffusion
driving aggregate sector productivity (hypothesis HB).

As the Cobb-Douglas specification provides a first estimate of neutral technological
change, the main focus of the paper will be on the bias of technological change toward dif-
ferent types of intermediate inputs. Therefore a translog specification of the production
function is employed, which allows for interactions between technological change and all
inputs, especially high-tech and non-high-tech inputs. Depending on the estimated sign
of the elasticity, the direction of the bias can be formally tested. Table 2 provides the
estimation results of equation (11) separated by goods-producing and services sectors.
Because of the technology focus of the paper, only the results for technology interactions
are subsequently discussed in more detail.

The results of the estimated parameters of the translog specification show an interesting
picture of the nature of technological change with respect to capital (γtK), labor (γtL),
high-tech intermediate inputs (γtθ1), and non-high-tech intermediate inputs (γtθ2) by
group of sectors. In case of goods-producing sectors, the empirical evidence suggests
labor- as well as high-tech input-augmenting technological change. As the elasticities
are estimated with differing magnitude and the other elasticities are insignificant, the
assumption of technology change that equally affects inputs (Hicks neutrality) is no
longer supported. The positively estimated interaction between high-tech inputs and
technological change supports the hypothesis that there is embodied technological change
in high-tech inputs (hypothesis HA). Moreover, the findings indicate that the diffusion of
embodied technology increased aggregate sectoral productivity of good-producing sectors
(hypothesis HB). These findings strengthen the interpretation of technology in high-tech
inputs, as there is no empirical evidence of a bias in non-high-tech inputs.
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Table 2: Growth Regressions by Sectoral Type, Translog Specification

Goods Producing Services

βK 2.068** 2.214**
[0.899] [0.973]

βL 0.922 0.227
[0.908] [0.660]

βθ1 -0.372 0.318
[0.394] [0.324]

βθ2 4.426** 3.465***
[1.876] [1.096]

γt 0.007 -0.058
[0.046] [0.062]

γtt 0.000 -0.001*
[0.001] [0.001]

βKK -0.215 -0.185
[0.135] [0.128]

βLL 0.132 0.168
[0.205] [0.344]

βθ1θ1 0.007 0.039
[0.056] [0.026]

βθ2θ2 1.124 0.849***
[0.845] [0.273]

βLK -0.224*** -0.226
[0.069] [0.267]

βθ1K -0.002 -0.017
[0.083] [0.033]

βθ2K -0.356 0.088
[0.323] [0.142]

βθ1L 0.083 0.003
[0.078] [0.070]

βθ2L -0.342 -0.420*
[0.360] [0.245]

βθ2θ1 0.096 0.102*
[0.122] [0.058]

γtK -0.009 0.011
[0.008] [0.008]

γtL 0.020** 0.005
[0.010] [0.012]

γtθ1 0.010*** 0.001
[0.003] [0.001]

γtθ2 0.017 -0.014***
[0.013] [0.004]

Constant -3.216* -0.004
[1.807] [2.700]

Observations 2184 1859
Within R2 0.63 0.76
# of clusters 168 144

Notes: Regressions are fixed-effects estimations controlling for time-
invariant country and industry effects. Robust standard errors in
brackets allow for heteroskedasticity and intra-sectoral correlated
standard errors. Significance levels: * significant at 10%; ** signifi-
cant at 5%; *** significant at 1%. Source: Author’s calculations.
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Regarding the translog results of technology parameters for services, there is only an
indication of input-saving technological change in case of non-high-tech inputs. This
finding is opposed to the results of goods-producing sectors and rejects the previously
determined assumption of Hicks neutrality in the Cobb-Douglas specification. As non-
high-tech inputs are supplied by less R&D-intensive sectors, those inputs embody lower
technology and are thus expected to be productivity reducing. This may serve as an
explanation for why services are technology saving in this type of input. Taking stock, the
econometric analysis suggests that embodied technology is a less important ingredient in
services than it is in goods-producing sectors. Moreover, the large extent of insignificantly
estimated technology biases in both groups of sectors, strongly questions the assumption
of Hicks neutrality.

6. Robustness Analysis

6.1. Exclusion of Sectors

For robustness analysis the embodied technology hypothesis of intermediate inputs (hy-
pothesis HA) and the assumption of spillover effects generated from high-tech inputs
among sectors affecting aggregate sectoral productivities (hypothesis HB) are further
tested. In particular, to test hypothesis HB specific industries are excluded from the
sample to validate whether the estimated coefficients of the technology biases still show
the same sign and statistical significance. In another robustness test the entire sample
from 1995 to 2007 is separated into two time periods and the coefficients are estimated
for these two periods using the entire and the reduced subsample.

I begin the robustness analysis with the goods-producing sample, in which the R&D-
intensive sectors are excluded (reduced subsample). The R&D-intensive sectors are by
definition the high-tech inputs producing sectors. Since the previously estimated tech-
nology biases included these sectors, this test aims at corroborating the spillover thesis
of embodied technology from high-tech inputs into other sectors’ productivity, whereas
only those sectors are considered that are exclusively using these inputs. There is a good
reason to test the overall validity of hypothesis HB by exclusion of the R&D-intensive
sectors, since the descriptive statistics in Figure 3 suggest R&D-intensive sectors to be
the main users of high-tech inputs. Their inclusion could cause a bias in the estimated
technology coefficient (γtθ1) and thus induces a misinterpretation of the economy-wide
spillover effect of embodied technological change from high-tech inputs.

Table 3 shows two columns for each of the two main industry types, goods-producing
and services sectors, whereas column I always includes the previous results of the entire
sample, while column II shows the new results excluding specific sectors. It is shown that
the exclusion of R&D-intensive sectors does not alter most of the estimated coefficients
in case of goods-producing sectors as most of the estimates remain similar in magnitude
and statistical significance. However, an interesting finding is the support of high-tech
input-augmenting technological change. Despite of reduced magnitude of the estimated
technology coefficient (γtθ1), it is still significant and positive suggesting productivity
spillovers in goods-producing sectors from high-tech inputs. In contrast, non-high-tech
inputs still show no significant spillover effects (γtθ2).
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Table 3: Translog Growth Regressions by Sectoral Type and Excluded Sectors

Goods Producing Services
I II I II

βK 2.068** 2.341*** 2.214** 2.160**
[0.899] [0.885] [0.973] [0.957]

βL 0.922 0.919 0.227 0.419
[0.908] [0.853] [0.660] [0.676]

βθ1 -0.372 0.320 0.318 0.363
[0.394] [0.340] [0.324] [0.375]

βθ2 4.426** 5.896*** 3.465*** 3.549***
[1.876] [1.794] [1.096] [1.263]

γt 0.007 0.028 -0.058 -0.059
[0.046] [0.045] [0.062] [0.063]

γtt 0.000 0.000 -0.001* -0.002**
[0.001] [0.001] [0.001] [0.001]

βKK -0.215 -0.311** -0.185 -0.205
[0.135] [0.131] [0.128] [0.131]

βLL 0.132 0.242 0.168 0.071
[0.205] [0.210] [0.344] [0.342]

βθ1θ1 0.007 0.082 0.039 0.037
[0.056] [0.054] [0.026] [0.032]

βθ2θ2 1.124 0.089 0.849*** 0.736**
[0.845] [1.184] [0.273] [0.313]

βLK -0.224*** -0.299*** -0.226 -0.186
[0.069] [0.068] [0.267] [0.264]

βθ1K -0.002 -0.159* -0.017 -0.008
[0.083] [0.091] [0.033] [0.051]

βθ2K -0.356 -0.561* 0.088 0.102
[0.323] [0.295] [0.142] [0.184]

βθ1L 0.083 0.156 0.003 -0.011
[0.078] [0.097] [0.070] [0.082]

βθ2L -0.342 -0.510 -0.420* -0.441
[0.360] [0.328] [0.245] [0.282]

βθ2θ1 0.096 0.138 0.102* 0.136*
[0.122] [0.150] [0.058] [0.077]

γtK -0.009 -0.018** 0.011 0.013*
[0.008] [0.008] [0.008] [0.008]

γtL 0.020** 0.022** 0.005 0.003
[0.010] [0.010] [0.012] [0.013]

γtθ1 0.010*** 0.007* 0.001 0.000
[0.003] [0.004] [0.001] [0.003]

γtθ2 0.017 0.015 -0.014*** -0.011
[0.013] [0.016] [0.004] [0.007]

Constant -3.216* -2.534* -0.004 -0.196
[1.807] [1.497] [2.700] [2.706]

Observations 2184 1560 1859 1703
Within R2 0.63 0.64 0.76 0.76
# of clusters 168 120 144 132

Notes: Regressions are fixed-effects estimations controlling for time-invariant
country and industry effects. Robust standard errors in brackets allow for
heteroskedasticity and intra-sectoral correlated standard errors. Significance
levels: * significant at 10%; ** significant at 5%; *** significant at 1%. Source:
Author’s calculations.
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A graphical illustration of the change in TFP over time for goods-producing sectors is
provided in Figure 5. It shows the partial derivative of the estimated TFP residual
according to equation (13) based on the results of Table 3, averaged over all sectors
and countries. The figures depict histograms of the average changes in TFP for goods-
producing sectors with and without R&D-intensive sectors. It becomes apparent that the
inclusion of R&D-intensive sectors introduces a stronger variability in the TFP estimates.
However, for both samples, there is a declining trend of changes in TFP over the period
of coverage.

Figure 5: Changes in TFP, by Goods-Producing Sectors

Notes: Goods-producing sectors include only manufacturing sectors. Changes in
TFP reflect the partial derivative of the estimated TFP residual with respect to
time. Averages are across sectors by year. Source: Author’s calculations.

Although Figure 5 indicates a decline in TFP, this decline is not induced by the utilization
of high-tech inputs. To illustrate the relationship between changes in TFP and the types
of intermediate inputs, Figure 6 shows scatter plots of changes in TFP by the share of
high-tech and non-high-tech inputs for goods-producing sectors with and without R&D-
intensive sectors. This time, averages in changes of TFP and input shares (θ1, θ2) reflect
averages across years by each countries’ sectors. As shown, high-tech inputs are positively
correlated with changes in TFP of goods-producing sectors. Such a relationship is not
found for non-high-tech inputs. These findings also hold for the reduced sample, where
R&D-intensive sectors are excluded.

In case of services, Table 3 also shows two columns. Column I again includes the previous
results for the entire sample of services sectors, while column II represents the services
sample with the sales & repair of vehicles industry excluded. According to Figure 4, it is
especially this specific industry that exhibits strong shares in high-tech inputs and which
may induce a bias in the estimated technology coefficients. Regarding column II, most of
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Figure 6: Changes in TFP and Intermediate Inputs, by Goods-Producing Sectors

Notes: Goods-producing sectors include only manufacturing sectors. Changes in
TFP reflect the partial derivative of the estimated TFP residual with respect to
time. Theta1 and theta2 reflect the shares of high-tech and non-high-tech inputs in
gross output, respectively. Averages are across years by sectors. Source: Author’s
calculations.

the coefficients remain of similar magnitude and statistical significance. However, with
respect to the interaction of technological change and high-tech inputs, the results no
longer provide empirical evidence for embodied technological change (γtθ1). This finding
rejects the hypothesis of technology spillovers into aggregate TFP of services. Moreover,
the exclusion of the sales & repair of vehicles industry also turns non-high-tech input-
saving technological change to be insignificant (γtθ2).

A graphical representation of the change in TFP for services is shown in Figure 7, which
provides the averaged partial derivative of the estimated TFP residual according to the
results of Table 3. The histograms for services with and without the sales & repair of
vehicles industry show a similar shape, whereas the sales & repair of vehicles industry
introduces no significant variability in the TFP estimates. Regrading the trend of changes
in TFP, it is declining as in case of goods-producing sectors. However, a comparison of
time trends by goods-producing and services sectors for common scales in axes shows
that the decline in TFP changes is much more pronounced in the latter (see Figure B.1
in the Appendix).

Although services account for an increasing share of economic activity, it is well known
that their productivity performance is less positive compared to goods-producing sectors
in most advanced economies, especially outside the US. Besides the European produc-
tivity slowdown, which is attributable to a slower emergence of the knowledge economy
and a lower growth contributions from investment in information and communication
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Figure 7: Changes in TFP, by Services

Notes: Services are market services. Changes in TFP reflect the partial derivative
of the estimated TFP residual with respect to time. Averages are across sectors by
year. Source: Author’s calculations.

technology in Europe compared to the US (Van Ark et al., 2008), services’ productivity
potential is also hampered by government policies that were largely designed for manu-
facturing industries (OECD, 2001a).

Regarding the declining trend in services’ TFP as illustrated in Figure 7, scatter plots of
the relationship between changes in TFP and the type of intermediate inputs suggest that
there is no clear relationship between high-tech inputs for services with and without the
sales & repair of vehicles industry (see Figure 8). In contrast, the scatter plots for non-
high-tech inputs suggest a negative correlation with changes in TFP of services. While
this holds for both samples, the negative correlation appears to be more pronounced for
the entire sample, including the sales & repair of vehicles industry.

6.2. Different Time Periods

Continuing the robustness analysis, I proceed with regressing the translog specifications
for different time periods. Therefore the sample is split into three periods from 1995
to 1998, from 1999 to 2003, from 2004 to 2007. In Table 4, column I always shows the
period split for the entire goods-producing sample, while column II provides the results
for the reduced goods-producing sample, excluding the R&D-intensive sectors.

According to column I in Table 4, the previously determined technology bias toward high-
tech inputs (γtθ1) for goods-producing sectors is supported for the 1999–2003 period,
while there is no technology bias toward non-high-tech inputs (γtθ2) in either of the
three periods. These findings suggest that the statistical significance of high-tech input-
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Figure 8: Changes in TFP and Intermediate Inputs, by Services

Notes: Services are market services. Changes in TFP reflect the partial derivative
of the estimated TFP residual with respect to time. Theta1 and theta2 reflect the
shares of high-tech and non-high-tech inputs in gross output, respectively. Averages
are across years by sectors. Source: Author’s calculations.

augmenting technological change as previously estimated in Table 3 (column I) mainly
originates from this second period.

Regarding the reduced sample of goods-producing sectors, there is an interesting finding
with respect to high-tech input-augmenting technological change (γtθ1). Despite a low
statistical significance of technology diffusion into goods-producing sectors when esti-
mated across the entire period (Table 3, column I), the period split supports the TFP
effect from diffusion of high-tech inputs for the 1993–2003 period. In contrast, split-
ting the sample by time periods leaves the technology bias toward non-high-tech inputs
statistically insignificant throughout all periods.

Taking stock, while the positively estimated coefficient for high-tech inputs supports
the hypothesis of embodied technological change in high-tech inputs (hypothesis HA),
the significant technology bias for the reduced sample strengthens the assumption of
productivity effects stemming from high-tech inputs outside the R&D-intensive sectors
and therefore the hypothesis of productivity effects from embodied technology diffusion
into aggregate goods-producing sectors (hypothesis HB).

For services, the estimation results of the period split as shown in Table 5 show the most
interesting results, as they weakly support the technology bias toward high-tech inputs
for the 1999–2003 period (column I). However, the previous findings of input-saving
technological change in case of non-high-tech inputs (Table 3, column I) are supported for
the same period as well. Since there is no technology bias during both periods 1995–1998
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Table 4: Translog Growth Regressions by Different Time Periods and Excluded Sectors

Goods Producing
1995–1998 1999–2003 2004–2007

I II I II I II

βK -1.362 0.212 1.849* 2.458** 1.848** 2.357***
[2.118] [1.995] [1.047] [1.112] [0.786] [0.807]

βL 10.233** 9.615** 1.403 0.573 -0.876 -0.417
[4.923] [4.384] [1.009] [0.954] [0.766] [0.763]

βθ1 -0.651 -0.235 0.022 0.270 0.711** 0.568*
[0.516] [0.399] [0.475] [0.522] [0.316] [0.343]

βθ2 3.105* 5.263*** 5.311** 9.285*** 3.663*** 2.283
[1.786] [1.948] [2.369] [3.193] [1.129] [1.381]

γt -0.393 -0.269 0.018 0.042 -0.132 -0.029
[0.240] [0.247] [0.104] [0.114] [0.096] [0.108]

γtt 0.011*** 0.008** -0.005** -0.003 0.005* 0.006*
[0.003] [0.003] [0.002] [0.003] [0.003] [0.004]

βKK -0.005 -0.140 -0.215 -0.309 -0.254** -0.148
[0.232] [0.221] [0.229] [0.257] [0.102] [0.092]

βLL -2.861** -2.686** 0.191 0.365** 0.327* 0.286*
[1.372] [1.275] [0.195] [0.184] [0.195] [0.164]

βθ1θ1 0.058 0.094** 0.039 0.024 0.148*** 0.104**
[0.038] [0.037] [0.034] [0.034] [0.050] [0.050]

βθ2θ2 0.027 0.035 0.642 -0.287 1.067 -0.185
[0.549] [0.638] [0.559] [0.945] [0.672] [0.938]

βLK 0.516 0.365 -0.325*** -0.386*** -0.133 -0.224**
[0.353] [0.352] [0.071] [0.062] [0.102] [0.094]

βθ1K 0.190* 0.244** -0.159* -0.200* -0.103 -0.034
[0.112] [0.098] [0.095] [0.120] [0.077] [0.087]

βθ2K 0.581 0.826* -1.202** -1.765** 0.004 0.039
[0.372] [0.472] [0.517] [0.794] [0.247] [0.308]

βθ1L -0.011 -0.120 0.179* 0.169 0.057 -0.002
[0.120] [0.107] [0.091] [0.104] [0.064] [0.068]

βθ2L -1.113** -1.805*** 0.218 -0.094 -0.456 -0.313
[0.431] [0.417] [0.396] [0.436] [0.297] [0.296]

βθ2θ1 0.028 0.051 0.038 0.139 0.193* 0.253**
[0.129] [0.122] [0.111] [0.115] [0.110] [0.119]

γtK -0.016 -0.002 -0.032 -0.058** -0.014 -0.040**
[0.037] [0.037] [0.022] [0.022] [0.018] [0.020]

γtL 0.105** 0.059 0.051*** 0.067*** 0.039*** 0.039***
[0.040] [0.038] [0.017] [0.015] [0.012] [0.014]

γtθ1 0.004 -0.002 0.010** 0.009* 0.007 0.003
[0.004] [0.004] [0.004] [0.004] [0.004] [0.006]

γtθ2 0.006 -0.006 0.035 0.042 -0.019 -0.004
[0.019] [0.021] [0.023] [0.027] [0.017] [0.021]

Constant -16.209** -17.562*** -2.918* -1.374 3.542 0.052
[7.844] [6.171] [1.534] [1.620] [2.938] [3.243]

Observations 672 480 840 600 672 480
Within R2 0.62 0.62 0.56 0.64 0.51 0.44
# of clusters 168 120 168 120 168 120

Notes: Regressions are fixed-effects estimations controlling for time-invariant country and industry effects.
Robust standard errors in brackets allow for heteroskedasticity and intra-sectoral correlated standard errors.
Column I and II show the results for goods-producing sectors with and without R&D-intensive sectors, respec-
tively. Significance levels: * significant at 10%; ** significant at 5%; *** significant at 1%. Source: Author’s
calculations.
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and 2004–2007, these findings suggest that most of the previously determined technology
biases in services originate during the second period. The entire sample of services also
shows non-high-tech input-augmenting technological change for the last period.

Due to the fact that the sales & repair of vehicles industry constitutes a particularity in
the utilization of high-tech inputs, Table 5 also provides estimation results for the reduced
sample by period split (column II). The results are in line with the estimation results for
the entire sample of services, in which there is a significant effect of non-high-tech input-
saving technological change during the 1999–2003 period. However, in contrast to the
previous estimates of the reduced sample in (Table 3, column II), the estimates provide
weak empirical evidence of TFP effects from high-tech inputs on aggregate services during
the first two periods. These findings suggest that after exclusion of the sales & repair of
vehicles industry there is embodied technology in high-tech inputs (hypothesis HA) and
thus aggregate productivity increases of services due to embodied technology diffusion
(hypothesis HB). Noteworthy is also the positive TFP effect of non-high-tech inputs
during the last period for the entire services sample, which turns statistically insignificant
as soon as the sales & repair of vehicles industry is excluded from the sample.

7. Discussion

The setup of the model describes a mechanism that triggers productivity increases on
the sectoral level. According to the idea of Romer (1990) it is the capability of R&D-
intensive sectors to produce high-tech intermediate inputs that embody technologies that
are utilized in the production process of other sectors (process innovations). Productivity
in this setup is thus driven by research spillovers whereby each user of high-tech inputs
benefits from the whole existing stock of high-tech innovations. In a standard Romer
model productivity additionally originates from the increased specialization of labor that
works along an increasing number of intermediate inputs. This is not explicitly modeled
in this setup, but implicitly assumed. Furthermore, the model implicitly assumes that
high-tech inputs are non-rival in nature, so that they can be used freely by other sectors
in their own research activities. However, to some extend high-tech inputs are excludable
to reward monopoly rents. In particular, it is these rents that motivate research activities
aimed at discovering new varieties of high-tech inputs. A limitation of this model is that
it does not capture any effects of creative destruction referred to by Schumpeter, which
were developed in Aghion and Howitt (1992). More precisely, there is no role of entry or
exit in the generation of output and productivity.

In a recent paper by Broda et al. (2006) the authors estimate the trade-induced effect
of input variety on productivity. Therefore the authors analyze bilateral trade flows
between 73 countries over the period from 1994 to 2003. From a production function
setup they derive a model of TFP growth, in which a a higher share of intermediate
goods results in a higher impact of increased input variety on TFP. According to their
findings growth in new input varieties over the period from 1994 to 2003 increased a
country’s productivity only by 0.13 percent. The relationship between input variety and
productivity is even lower for developed countries. Hence, the authors argue that most
of the productivity growth in many of the largest countries cannot be accounted for by
new imported inputs. A main argument against Broda et al. (2006) is that choosing only
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Table 5: Translog Growth Regressions by Different Time Periods and Excluded Sectors

Services
1995–1998 1999–2003 2004–2007

I II I II I II

βK 4.874** 5.234** 3.471*** 3.471*** -0.457 -0.467
[2.321] [2.430] [0.900] [0.901] [0.500] [0.541]

βL -9.040** -6.718* -0.406 -0.285 0.059 0.354
[3.862] [3.921] [1.505] [1.527] [0.881] [0.927]

βθ1 0.292 0.103 0.116 0.233 0.603 0.781
[0.330] [0.377] [0.315] [0.353] [0.425] [0.487]

βθ2 0.524 0.987 -0.587 -1.008 1.748 1.249
[1.031] [1.191] [1.415] [1.485] [1.081] [1.275]

γt 0.004 0.056 -0.070 -0.048 -0.033 -0.052
[0.236] [0.248] [0.131] [0.131] [0.092] [0.093]

γtt 0.001 0.001 -0.006** -0.006** 0.002 0.003
[0.003] [0.003] [0.003] [0.003] [0.002] [0.003]

βKK -0.342 -0.352 -0.130 -0.112 -0.270** -0.293***
[0.263] [0.277] [0.104] [0.113] [0.105] [0.110]

βLL 2.640*** 2.235** 0.726* 0.736** -0.563** -0.660**
[0.950] [0.973] [0.370] [0.365] [0.281] [0.301]

βθ1θ1 0.053*** 0.045** 0.012 0.016 0.010 0.029
[0.019] [0.020] [0.014] [0.014] [0.025] [0.032]

βθ2θ2 0.630*** 0.613*** 0.699*** 0.670*** 0.924*** 1.135***
[0.192] [0.217] [0.183] [0.199] [0.284] [0.358]

βLK -0.634 -0.699 -0.534*** -0.563*** 0.399** 0.418**
[0.451] [0.461] [0.170] [0.163] [0.161] [0.167]

βθ1K -0.008 -0.018 -0.051 -0.088** 0.000 -0.008
[0.048] [0.053] [0.035] [0.044] [0.042] [0.069]

βθ2K 0.120 0.172 0.525*** 0.661*** -0.228 -0.240
[0.160] [0.167] [0.171] [0.194] [0.141] [0.203]

βθ1L -0.007 0.039 0.035 0.047 -0.136* -0.159
[0.061] [0.078] [0.061] [0.064] [0.075] [0.097]

βθ2L -0.040 -0.169 -0.134 -0.177 -0.065 0.038
[0.213] [0.259] [0.202] [0.211] [0.219] [0.274]

βθ2θ1 -0.025 -0.002 0.014 0.014 -0.122** -0.186**
[0.035] [0.043] [0.042] [0.046] [0.057] [0.086]

γtK 0.028 0.030 0.029* 0.028* -0.004 -0.004
[0.038] [0.040] [0.016] [0.016] [0.011] [0.011]

γtL -0.023 -0.035 -0.007 -0.009 0.014 0.015
[0.044] [0.045] [0.023] [0.024] [0.016] [0.017]

γtθ1 0.003 0.006* 0.004* 0.007* -0.001 -0.001
[0.002] [0.003] [0.002] [0.004] [0.002] [0.004]

γtθ2 -0.008 -0.015 -0.036*** -0.045*** 0.020*** 0.018
[0.009] [0.011] [0.006] [0.010] [0.008] [0.012]

Constant 13.893 7.334 -3.773 -4.066 7.163*** 6.839***
[10.041] [10.360] [4.048] [4.092] [1.986] [2.131]

Observations 573 525 718 658 568 520
Within R2 0.78 0.79 0.58 0.58 0.58 0.58
# of clusters 144 132 144 132 143 131

Notes: Regressions are fixed-effects estimations controlling for time-invariant country and industry effects.
Robust standard errors in brackets allow for heteroskedasticity and intra-sectoral correlated standard errors.
Column I and II show the results for services with and without the sales & repair of vehicles industry, respectively.
Significance levels: * significant at 10%; ** significant at 5%; *** significant at 1%. Source: Author’s calculations.
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imported inputs underestimates the effects of input variety in more developed countries,
which are likely to play a more important role in developed countries.

8. Conclusion

Intermediate inputs constitute an important part of industrialized economies’ value
chains. Their importance is not only demonstrated by its large shares in gross out-
put, but also due to the fact that modern economies are more and more characterized
by strong sectoral interconnection. As intermediate inputs are important parts of higher
value products on later stages of assembly, they encapsulate innovation efforts of up-
stream sectors and thus facilitate technology diffusion throughout the economy. As usu-
ally technology is assumed to be exclusively embodied in capital, the purpose of the
paper is in analyzing the importance of embodied technology in intermediate inputs as
well as the validity of embodied technology diffusion on sectoral productivity. Therefore
two hypotheses are formally tested, in which the first hypothesis postulates that there
is embodied technological change in intermediate inputs, especially in high-tech input.
The second hypothesis postulates given that there is embodied technological change in
high-tech inputs that there is embodied technology diffusion that increases aggregate
productivity via use of such high-tech inputs in firms’ production process. The empirical
evidence of this paper for a sample of 12 OECD countries shows that there is indeed a
bias in technological change toward high-tech inputs and embodied technology diffusion
is a source of sectoral productivity increases. However, the effect is more pronounced for
goods-producing sectors.
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AppendixA. Tables

Table A.1: Variable List

Variable Description

GO Gross output by industry at current basic prices (national currency)
GO_real Real gross output by industry, volume indices (1995 = 100)
K_real Real fixed capital stock, volume indices (1995 = 100)
H Total hours worked by persons engaged, volume indices (1995 = 100)
II Intermediate inputs at current purchasers’ prices (national currency)
II_HT High-tech intermediate inputs at current purchasers’ prices
II_NHT Non-high-tech intermediate inputs at current purchasers’ prices

Table A.2: Country Coverage

Country

Germany
France
Italy
Sweden
Finland
Netherlands
Denmark
United Kingdom
United States
Canada
Australia
Japan
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Table A.3: Sectoral Coverage, Size, and R&D Intensity

SIC-Code Sector Avg. R&D
Output Intensity
Share

AtB AGRICULTURE, FORESTRY & FISHING
C MINING & QUARRYING

15t16 FOOD, BEVERAGES & TOBACCO 0.05 Not
17t18 Textiles and textile 0.01 Not

19 Leather, leather and footwear 0.00 Not
20 WOOD AND OF WOOD AND CORK 0.01 Not

21t22 PULP, PAPER, PRINTING & PUBLISHING 0.03 Not
23 Coke, refined petroleum & nuclear fuel 0.02 Not
24 Chemicals and chemical 0.04 Intensive
25 Rubber and plastics 0.01 Not
26 OTHER NON-METALLIC MINERAL 0.01 Not

27t28 BASIC METALS & FABRICATED METAL 0.06 Not
29 MACHINERY, NEC 0.04 Intensive

30t33 ELECTRICAL & OPTICAL EQUIPMENT 0.04 Intensive
34t35 TRANSPORT EQUIPMENT 0.05 Intensive
36t37 MANUFACTURING NEC; RECYCLING 0.01 Not

E ELECTRICITY, GAS & WATER SUPPLY
F CONSTRUCTION
50 Sale/repair of vehicles; retail sale of fuel 0.02 Not
51 Wholesale trade 0.07 Not
52 Retail trade; repair of household goods 0.05 Not
H HOTELS & RESTAURANTS 0.03 Not
60 Other Inland transport 0.03 Not
61 Other Water transport 0.01 Not
62 Other Air transport 0.01 Not
63 Other auxiliary transport activities 0.02 Not
64 POST & TELECOMMUNICATIONS 0.03 Not
J FINANCIAL INTERMEDIATION 0.08 Not
70 Real estate activities 0.11 Not

71t74 Renting of m&eq and other business activities 0.14 Not

Notes: Goods-producing sectors include only manufacturing sectors, i.e. from SIC code 15 to
37. Services are market services. Output shares sum up to 1.00 and refer to industry averages
across countries in 2007. Classification of R&D intensity is based on OECD (2011).
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AppendixB. Figures

Figure B.1: Changes in TFP, by Goods-Producing and Services Sectors

Notes: Goods-producing sectors include only manufacturing sectors. Services are
market services. Changes in TFP reflect the partial derivative of the estimated
TFP residual with respect to time.
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Figure B.2: Changes in TFP, by Goods-Producing Sectors

Notes: Goods-producing sectors include only manufacturing sectors. Changes in TFP reflect the partial
derivative of the estimated TFP residual with respect to time. Averages are across sectors by year.
Source: Author’s calculations.

Figure B.3: Changes in TFP, by Services

Notes: Services are market services. Changes in TFP reflect the partial derivative of the estimated TFP
residual with respect to time. Averages are across sectors by year. Source: Author’s calculations.

29



AppendixC. Theoretical Underpinning: Extension

For illustration of the mechanism between intermediate inputs, technological change,
and output, the relationship is modeled in a simple version of the original Romer model
(Romer, 1990), which is a modified version of the product variety model presented in
Aghion and Howitt (2009). It is assumed that there is a continuum of intermediate
inputs xi (i.e. no distinct separation into high-tech and non-high-tech), whereas the
total amount of intermediate inputs produced resembles the total amount of final goods
used in the production of intermediate inputs, Xt:

Xt =

∫ Mt

0

xidi (C.1)

and that final output is produced under perfect competition given the simplified produc-
tion function

Yt = L1−α
t Xα

t (C.2)

where Yt is output and L resembles a fixed supply labor. The final good is used for con-
sumption and investment (in producing blueprints). Its only other use is in producing
intermediate products. The rational behind the production function incorporates the de-
gree of intermediate inputs Xt as the economy’s aggregate productivity parameter, which
determines the economy’s long-run growth rate. Hence it represents a stock of embodied
technological change. More inputs raise the economy’s production potential because a
given stock of new inputs is allowed to be spread over a larger number of uses. Each
intermediate input is monopolized by the person who created it, hence new innovations
result from R&D investments by researchers who are motivated by the prospect of such
monopoly rents and thus act as monopolists in the production of intermediate inputs.

Regarding labor supply it is assumed that there is a fixed number L of households,
whereas no one has a demand for leisure time, so each person offers labor inelastically
(i.e. independently of the wage rate). The household’s utility each period depends only
on consumption, c, according to an isoelastic function:

u(c) =
c1−ε

1− ε
, ε > 0 (C.3)

with ε resembling the substitution parameter between present and future consumption.
Furthermore, the household discounts utility using a constant rate of time preference, ρ.
This means that in the steady state the growth rate of output, g, and the interest rate,
r, must obey the Euler equation, which can be written as

g =
r − ρ
ε

(C.4)

Regarding the monopolist, he seeks to maximize the flow of profits, which are measured
in units of the final good:

Πi = pixi − xi (C.5)

30



where pi is the price in units of the final good. As shown in equation C.5 the monopolist’s
output equals the revenue (price times quantity) and his costs. Since the price of an
input in a perfectly competitive industry is the value of its marginal product, it can be
formulated

∂Yt
∂xi

= αL1−α
t xα−1

i = pi (C.6)

Therefore the monopolist’s profit is calculated according to

Πi = αL1−αxαi − xi (C.7)

Maximizing his profit, the monopolist will choose x in such way that it obeys the the
first-order condition

∂Πi

∂xi
= α2L1−αxα−1

i − 1 = 0 (C.8)

Form this follows that the equilibrium quantity will be the same constant in every sector
i:

x = Lα
2

1−α (C.9)

and so will the equilibrium profit flow:

Π =
1− α
α

Lα
2

1−α (C.10)

To see how the mechanism affects output growth, it is assumed that output changes
proportionally with inputs:

g =
dYt
dt

1

Yt
=
dXt

dt

1

Xt
(C.11)

Modeling the driving forces of inputs, it is supposed that inputs grow at a rate that
depends on the amount R, which is the final output that is used in research (note,
there is not explicit modeling of sectors characterized by different Rs). Alternatively,
the output of research in each period is the flow of blueprints allowing new inputs to be
developed; hence, changes in the production of inputs are determined according to

dX

dt
= λR (C.12)

where λ is a (positive) parameter indicating the productivity of the research.

Assuming that research is perfectly competitive with free entry then the flow of profit
from research activities must be equal to zero. Each blueprint is worth Π/r, which reflects
the present value of the profit flow, Π, discounted at the market interest rate, r. Hence,
the flow of profit from research is

(Π/r)λR−R (C.13)
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which just resembles revenues (price, Π/r), times output, λR) minus costs (R). For this
to be zero, a rate of interest is needed that satisfies the subsequent research-arbitrage
equation:

r = λΠ (C.14)

That is, the rate of interest must equal the flow of profit that an innovating sector can
receive per unit invested in research. Substituting equation (C.14) into equation (C.4)
yields

g =
λΠ− ρ

ε
(C.15)

Further substituting equation (C.10) in equation (C.15) yields the following expression
for the equilibrium growth rate:

g =
λ 1−α

α Lα
2

1−α − ρ
ε

(C.16)

where output growth positively depends on productivity of research, λ, and the size of
the economy, L.

In the outlined innovation-based growth model, innovations take place with the same
average frequency in all intermediate sectors, measured by the parameter R. In reality,
however, some sectors are persistently more innovative than others and thus show differ-
ent R&D intensities. Because of this, I explicitly account for different R&D intensities by
sectors and their intermediate inputs produced, which are high-tech and non-high-tech
inputs. From this follows

dH

dt
= λhRh (C.17)

dM

dt
= λnRn (C.18)

where H resembles high-tech inputs (produced by R&D-intensive sectors with λh and
Rh) andM is non-high-tech inputs (produced by non-R&D-intensive sectors with λn and
Rn).

Allowing for differences in R&D intensities by sectors introduces the mechanism of biases
in technological change. This is because differences in sectoral R&D intensities often
originate from their size. This is as it is more profitable to innovate in a larger sector
because a successful innovator has a larger market there. Hence, technological change
tends to be biased more toward larger sectors than smaller ones. Regarding the size
of sectors, measured as sectoral output share in total output, Table A.3 shows that
R&D-intensive sectors indeed belong to those sectors with the highest output shares in
goods-producing sectors.

Relaxing the assumption of constant returns to scale in equation (C.2) and extending
the production function by introduction of capital and separation of X into H and M
yields

Yt = (Kα
t L

β
t )1−θ1−θ2Hθ1

t M
θ2
t (C.19)
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with intermediate inputs substituting for value added reflected by the substitution pa-
rameters θ1 and θ2. H and M again represent a stocks of embodied technological change
that drives output growth, whereas H is assumed to incorporate a higher fraction of
technology as these input are produced by R&D-intensive sectors. A confirmation of the
positive effect of both types of intermediate inputs is shown in the regression results in
Table 1, where the proxy for technological change is excluded from the regression (column
II). However, the direct impact of H on output is much lower than for M .

Now, besides assuming that technological change is entirely embodied in intermediate
inputs, technological change as measured by A can also be modeled explicitly. Presuming
that A is Hicks neutral and thus is affecting all inputs equally, equation (C.19) can be
formulated according to

Yt = A(Kα
t L

β
t )1−θ1−θ2Hθ1

t M
θ2
t (C.20)

whereas there is no bias in technological change toward specific input factors. Instead,
allowing for technology biases equation (C.19) can be modeled with specific technology
parameters for all input factors explicitly

Yt = [(AKKt)
α(ALLt)

β ]1−θ1−θ2(AHHt)
θ1(AMMt)

θ2 (C.21)

Since AH and AM reflect the technology biases toward high-tech and non-high-tech in-
puts, a positively (negatively) estimated coefficient suggests input-augmenting (-saving)
technological change, whereas especially the augmentation in high-tech inputs serves as
confirmation of the embodied hypothesis of high-tech inputs (hypothesis HA). The differ-
ent sectoral productivity parameters of research, measured as λ, and which are assumed
to be time invariant in nature, may introduce an endogeneity issue between Yt and H
and M . However, by applying fixed-effects estimation methods this endogeneity issue is
mitigated as such unobserved individual heterogeneity is purged from the regression.
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