Uncertain Productivity Growth and the Choice between

FDI and Export

Erdal Yalcin* Davide Sala**

January 2014

WEB-APPENDIX

This document provides analytical derivations referred to in the article: Uncertain Productivity Growth and the Choice between FDI and Export. Published in the Review of International Economics.
${ }^{*}$ Ifo Institute for Economic Research, Center for International Economics, CESifo, Poschinger Str. 5, 81679 Munich, Germany. E-mail: yalcin@ifo.de.
${ }^{* *}$ Department of Business and Economics, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark. E-mail: dsala@sam.sdu.dk.

Appendix

A Equivalent Risk-Adjusted Return

Given the Geometric Brownian motion in equation (22), from Ito's lemma we have:

$$
\mathbb{E}\left(\frac{d \phi^{\kappa}}{\phi^{\kappa}}\right)=\left(\kappa \phi^{\kappa-1} d \phi+\frac{1}{2} \kappa(\kappa-1) \phi^{\kappa-2} \sigma^{2} \phi^{2} d t\right) / \phi^{\kappa}
$$

Substituting for $d \phi$ leads to

$$
\begin{equation*}
\mathbb{E}\left(\frac{d \phi^{\kappa}}{\phi^{\kappa}}\right)=\left(\alpha \kappa+\frac{1}{2} \kappa \sigma^{2}(\kappa-1)\right) d t+\kappa \sigma d z_{t} \tag{A.1}
\end{equation*}
$$

From the quadratic equation in (B.1), which is valid for ϕ^{κ} with $\Psi(\kappa)=0$, it follows that

$$
\frac{1}{2} \kappa \sigma^{2}(\kappa-1)=r-(r-(\mu-\alpha)) \kappa
$$

Hence, the equivalent risk-adjusted rate of return for an exponential variable results as

$$
\begin{equation*}
\mu_{e}=r+\kappa(\mu-r) \tag{A.2}
\end{equation*}
$$

B The Fundamental Quadratic Equation

Substituting the guess solution $F(i, \phi(\sigma))=A_{1} \phi^{\beta}$ and its derivatives into the linear differential equation (27), we receive the fundamental quadratic equation

$$
\begin{equation*}
\Psi=\frac{1}{2} \sigma^{2} \beta(\beta-1)+(r-(\mu-\alpha)) \beta-r=0 \tag{B.1}
\end{equation*}
$$

Consider the total differential

$$
\begin{equation*}
\frac{\partial \Psi}{\partial \beta} \frac{\partial \beta}{\partial \sigma}+\frac{\partial \Psi}{\partial \sigma}=0 \tag{B.2}
\end{equation*}
$$

which can be evaluated at $\beta=\beta_{1}$. The quadratic equation (B.1) increases in β_{1} with $\partial \Psi / \partial \beta_{1}>0$. The derivative of Ψ with respect to σ results as

$$
\begin{equation*}
\frac{\partial \Psi}{\partial \sigma}=\sigma \beta_{1}\left(\beta_{1}-1\right)>0 \tag{B.3}
\end{equation*}
$$

because of (28). From B. 2 we have necessarily $\frac{\partial \beta_{1}}{\partial \sigma}<0$. Furthermore, the discount rate of periodical profits in equation (25) turns out to be the negative expression of Ψ evaluated at κ. Note that

$$
\begin{equation*}
\mu_{e}-\alpha_{e}=r-(r-(\mu-\alpha)) \kappa-\frac{1}{2} \kappa(\kappa-1) \sigma^{2} . \tag{B.4}
\end{equation*}
$$

For bounded results, this discount rate needs to be strictly positive and, hence, κ must lie between the two roots, specifically: $\beta_{1}>\kappa>0$. As a consequence,

$$
\begin{equation*}
\frac{\partial\left(\frac{\beta_{1}}{\beta_{1}-\kappa}\right)}{\partial \sigma}>0 \tag{B.5}
\end{equation*}
$$

For $\sigma=0$, we have $\mu=r$, and from equation (B.1) it follows that $\beta_{1}=\frac{r}{\alpha}=\beta$.

C Expected Entry Time

By using the Girsanov theorem ${ }^{1}$ it is possible to derive the probability density function of the waiting time $T(i)$ as

$$
\begin{equation*}
f\left(T\left(i, \phi_{\sigma}^{*}(i)\right), \phi\right)=\frac{\ln \left(\frac{\phi_{\sigma}^{*}(i)}{\phi}\right)}{\sqrt{2 \pi \sigma^{2} T\left(i, \phi_{\sigma}^{*}(i)\right)^{3}}} e^{-\frac{\left(\ln \left(\frac{\phi_{\sigma}^{*}(i)}{\phi}\right)-\left(\alpha-\frac{1}{2} \sigma^{2}\right) T\left(i, \phi_{\sigma}^{*}(i)\right)\right)^{2}}{2 \sigma^{2} T\left(i, \phi_{\sigma}^{*}(i)\right)}} \tag{C.1}
\end{equation*}
$$

with $\phi_{\sigma}^{*}(i)>\phi$. The Laplace transform of $T\left(i, \phi_{\sigma}^{*}(i)\right)$ is then given by (see Ross, 1996; Proposition 8.4.1)

$$
\begin{align*}
\mathbb{E}\left(e^{-\lambda T\left(i, \phi_{\sigma}^{*}(i)\right)^{*}}\right) & =\int_{0}^{\infty} e^{-\lambda T\left(i, \phi_{\sigma}^{*}(i)\right)} f\left(T\left(i, \phi_{\sigma}^{*}(i)\right)\right) d T\left(i, \phi_{\sigma}^{*}(i)\right) \tag{C.2}\\
& =e^{-\left(\sqrt{\left(\alpha-\frac{1}{2} \sigma^{2}\right)^{2}+2 \sigma^{2} \lambda}-\left(\alpha-\frac{1}{2} \sigma^{2}\right)\right) \frac{\ln \left(\frac{\phi_{\sigma}^{*}(i)}{\phi}\right)}{\sigma^{2}}} \tag{C.3}
\end{align*}
$$

and can be used to determine the expected waiting time as

$$
\begin{align*}
\mathbb{E}\left(T\left(i, \phi_{\sigma}^{*}(i)\right)\right) & =\int_{0}^{\infty} T\left(i, \phi_{\sigma}^{*}(i)\right) f\left(T\left(i, \phi_{\sigma}^{*}(i)\right)\right) d T\left(i, \phi_{\sigma}^{*}(i)\right) \tag{C.4}\\
& =-\lim _{\lambda \rightarrow 0} \frac{\partial \mathbb{E}\left(e^{-\lambda T\left(i, \phi_{\sigma}^{*}(i)\right)}\right)}{\partial \lambda}=\frac{\ln \left(\frac{\phi_{\sigma}^{*}(i)}{\phi}\right)}{\alpha-\frac{1}{2} \sigma^{2}} \tag{C.5}
\end{align*}
$$

[^0]More precisely,

$$
\mathbb{E}\left(T_{i}\left(\phi_{\sigma}^{*}(i), \phi\right)\right)= \begin{cases}\frac{1}{\alpha-\frac{1}{2} \sigma^{2}} \ln \left(\frac{\phi_{\sigma}^{*}(i)}{\phi}\right) & \text { if } \quad \alpha>\frac{1}{2} \sigma^{2} \tag{C.6}\\ \infty & \text { if } \quad \alpha \leq \frac{1}{2} \sigma^{2}\end{cases}
$$

with $\phi_{\sigma}^{*}(i)>\phi$ and $i \in\{E, F\}$.

D Expected Entry Time and Comparative Statics

Exploiting the monotonicity of V_{0}^{e} in $\phi_{\sigma}^{*}(i)$, we prove that $\frac{\partial \phi_{\sigma}^{*}(i)}{\partial \sigma}>0$ and $\frac{\partial \phi_{\sigma}^{*}(i)}{\partial \alpha}<0$ by proving that $\frac{\partial V_{0}^{e}\left(i, \phi_{\sigma}^{*}\right)}{\partial \sigma}>0$ and $\frac{\partial V_{0}^{e}\left(i, \phi_{\sigma}^{*}\right)}{\partial \alpha}<0$, respectively.

Rearranging (36), we obtain

$$
\begin{equation*}
\frac{M(i) \phi_{\sigma}^{*}(i)^{\kappa}}{\mu_{e}-\alpha_{e}}=V_{0}^{e}\left(\phi_{\sigma}^{*}(i)\right)=\frac{\beta_{1}}{\beta_{1}-\kappa} I(i) \tag{D.1}
\end{equation*}
$$

The derivative of $V_{0}^{e}\left(\phi_{\sigma}^{*}(i)\right)$ with respect to σ results as

$$
\begin{equation*}
\frac{\partial V_{0}^{e}\left(\phi_{\sigma}^{*}(i)\right)}{\partial \sigma}=\frac{\partial \beta_{1}}{\partial \sigma} I_{i}\left(\frac{-\kappa}{\left(\beta_{1}-\kappa\right)^{2}}\right) \tag{D.2}
\end{equation*}
$$

From B. 1 we can derive

$$
\begin{equation*}
\frac{\partial \beta_{1}}{\partial \sigma}=-\frac{\beta_{1} \sigma\left(\beta_{1}-1\right)}{\sigma^{2}\left(\beta_{1}-\frac{1}{2}\right)+r-(\mu-\alpha)} \tag{D.3}
\end{equation*}
$$

Substituting into D. 2 results in

$$
\begin{equation*}
\frac{\partial V_{0}^{e}\left(\phi_{\sigma}^{*}(i)\right)}{\partial \sigma}=\frac{V_{0}^{e}\left(\phi_{\sigma}^{*}(i)\right) \sigma\left(\beta_{1}-1\right) \kappa}{\left(\sigma^{2}\left(\beta_{1}-\frac{1}{2}\right)+r-(\mu-\alpha)\right)\left(\beta_{1}-\kappa\right)} . \tag{D.4}
\end{equation*}
$$

For $\beta_{1}>1$ and $\kappa \geq 1$ the numerator is always positive. We can prove that the denominator is also always positive. To do so, we rewrite (28) as

$$
\begin{equation*}
\left(\beta_{1}-\frac{1}{2}\right) \sigma^{2}+r-(\mu-\alpha)=\sigma^{2} \sqrt{\left(\frac{r-(\mu-\alpha)}{\sigma^{2}}-\frac{1}{2}\right)^{2}+\frac{2 r}{\sigma^{2}}}>0 \tag{D.5}
\end{equation*}
$$

The right-hand side of this equation is always positive for $\beta_{1}>1$, and hence $\frac{\partial V_{0}^{e}\left(\phi_{\sigma}^{*}(i)\right)}{\partial \sigma}>0$.

Furthermore,

$$
\begin{equation*}
\frac{\partial V_{0}^{e}\left(\phi_{\sigma}^{*}(i)\right)}{\partial \alpha}=\frac{\partial \beta_{1}}{\partial \alpha} I_{i}\left(\frac{-\kappa}{\left(\beta_{1}-\kappa\right)^{2}}\right) \tag{D.6}
\end{equation*}
$$

From D. 2 we receive

$$
\begin{equation*}
\frac{\partial \beta_{1}}{\partial \alpha}=\frac{-\beta_{1}}{\left(\beta_{1}-\frac{1}{2}\right) \sigma^{2}+r-(\mu-\alpha)}<0 \tag{D.7}
\end{equation*}
$$

Hence, we have $\frac{\partial V_{i}^{*}}{\partial \alpha}>0$. Since V_{i}^{*} behaves as ϕ_{i}^{*}, we can state $\frac{\partial \phi_{\sigma}^{*}(i)}{\partial \alpha}<0 \quad \wedge \quad \frac{\partial \phi_{\sigma}^{*}(i)}{\partial \sigma}>0$. With these results we can consider the following partial derivatives of C.6:

$$
\begin{align*}
\frac{\partial \mathbb{E}\left(T\left(i, \phi_{\sigma}^{*}(i)\right)\right)}{\partial \sigma} & =\frac{\sigma}{\left(\alpha-\frac{1}{2} \sigma^{2}\right)^{2}} \ln \left(\frac{\phi_{\sigma}^{*}(i)}{\phi}\right)+\frac{1}{\left(\alpha-\frac{1}{2} \sigma^{2}\right)} \frac{1}{\phi_{\sigma}^{*}(i)} \frac{\partial \phi_{\sigma}^{*}(i)}{\partial \sigma}>0 \tag{D.8}\\
\frac{\partial \mathbb{E}\left(T\left(i, \phi_{\sigma}^{*}(i)\right)\right)}{\partial \alpha} & =-\frac{1}{\left(\alpha-\frac{1}{2} \sigma^{2}\right)^{2}} \ln \left(\frac{\phi_{\sigma}^{*}(i)}{\phi}\right)+\frac{1}{\left(\alpha-\frac{1}{2} \sigma^{2}\right)} \frac{1}{\phi_{\sigma}^{*}(i)} \frac{\partial \phi_{\sigma}^{*}(i)}{\partial \alpha}<0 \tag{D.9}
\end{align*}
$$

In both modes expected entry time increases in σ and decreases in α.

A longer working paper version of this analysis is published in the discussion papers on Business and Economics No.19/2012 at University of Southern Denmark.

[^0]: ${ }^{1}$ A detailed derivation is offered by Karatzas and Shreve (1991, p.196) or by Karlin and Taylor (1975, p.363).

