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Abstract
How should researchers adjust for covariates? We show that if the propensity score
is estimated using a specific covariate balancing approach, inverse probability weight-
ing (IPW), augmented inverse probability weighting (AIPW), and inverse probability
weighted regression adjustment (IPWRA) estimators are numerically equivalent for
the average treatment effect (ATE), and likewise for the average treatment effect on the
treated (ATT). The resulting weights are inherently normalized, making normalized
and unnormalized IPW and AIPW identical. We discuss implications for instrumental
variables and difference-in-differences estimators and illustrate with two applications
how these numerical equivalences simplify analysis and interpretation.
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1 Introduction

Covariate adjustment is central to causal inference, yet the choice of method remains
contested. Much recent research has highlighted the shortcomings of a number of well-
established estimation methods in reproducing suitable averages of heterogeneous treat-
ment effects. A key lesson from this literature is that additive linear models may often
fail to properly adjust for covariates when those covariates are relevant for identification.
This concern arises not only under unconfoundedness (e.g., Słoczyński, 2022; Goldsmith-
Pinkham, Hull, and Kolesár, 2024; Chen, 2025), but also in instrumental variables (e.g.,
Słoczyński, 2024; Blandhol, Bonney, Mogstad, and Torgovitsky, 2025) and difference-in-
differences settings (e.g., Caetano and Callaway, 2024).

When considering alternatives to standard methods, researchers face a wide range of
options, including regression adjustment, matching, weighting, and doubly robust estima-
tors, as well as related approaches based on machine learning. Such variety is not necessar-
ily desirable: the existence of a common standard facilitates comparability across studies,
while additional researcher degrees of freedom invite specification searching (Simmons,
Nelson, and Simonsohn, 2011; Vivalt, 2019; Ferman, Pinto, and Possebom, 2020).

In this paper, we build on the fact that many of these alternative methods require first-
step estimation of the propensity score. We assume that a researcher would be willing to
commit to estimating the propensity score using a particular method of moments approach
with desirable properties, namely the inverse probability tilting (IPT) estimator of Egel,
Graham, and Pinto (2008) and Graham, Pinto, and Egel (2012, 2016). (To be clear, a re-
searcher using IPT still needs to choose a model for the propensity score, perhaps logit or
probit, but would then estimate this model using the method of moments instead of maxi-
mum likelihood.) Our main contribution is to demonstrate that commitment to using IPT
substantially reduces the choice set (i.e., the number of alternative estimators) available to
researchers. Specifically, we show that using the IPT moment conditions to estimate the
propensity score leads to numerical equivalence between members of several classes of
estimators of average treatment effects: inverse probability weighting (IPW), augmented
inverse probability weighting (AIPW), and inverse probability weighted regression ad-
justment (IPWRA), with the latter two classes using linear models for potential outcome
means. Our equivalence results are very general, as they are valid for any propensity score
model having the index form (e.g., logit or probit). In addition, they apply to both nor-
malized and unnormalized versions of IPW and AIPW, as well as to estimators of both the
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average treatment effect (ATE) and the average treatment effect on the treated (ATT).
Our equivalence results are meaningful insofar as IPT is appealing in its own right. In-

deed, a major reason for this appeal is that the moment conditions underlying IPT impose a
desirable property known as “exact balancing.” Specifically, IPT estimates the parameters
of the propensity score model such that, after reweighting, the mean covariate values are
identical across key groups: between the (weighted) treatment group, the (weighted) com-
parison group, and the (unweighted) full sample when estimating the ATE, and between
the (unweighted) treatment group and the (weighted) comparison group when estimating
the ATT. In this sense, IPT is a prototypical “covariate balancing” estimator, ensuring that
causal comparisons are made only between groups with identical (mean) characteristics.
As shown by Egel, Graham, and Pinto (2008) and Graham, Pinto, and Egel (2012, 2016),
IPT estimators of the ATE and ATT also enjoy local efficiency and double robustness prop-
erties. That is, if both the propensity score model chosen by the researcher (e.g., logit or
probit) and the linear specification of potential outcome means are correct, the estimators
are semiparametrically efficient; if only one is correctly specified, the estimators remain
consistent. As we review below, the IPT estimator of the ATT is also identical to the sub-
sequent proposals of Hainmueller (2012) and Imai and Ratkovic (2014).1

We also translate our equivalence results to instrumental variables and difference-in-
differences settings. In both contexts, weighting and doubly robust estimators have played
a prominent role in the recent literature, and our results again simplify the set of alternative
estimators available to empirical researchers. In particular, our results imply that the dou-
bly robust estimator proposed by Sant’Anna and Zhao (2020), which uses IPT-estimated
propensity scores, is numerically equivalent to the simple IPW estimator of Abadie (2005)
with IPT weights. It follows that in implementations of Sant’Anna and Zhao (2020) it is
redundant to estimate the model for the untreated potential change in outcomes.

We illustrate our findings with two empirical applications. In the first application, we
revisit the study of the causal effects of cash transfers on longevity in Aizer, Eli, Ferrie,
and Lleras-Muney (2016). In line with an earlier replication in Słoczyński (2022), we con-
clude that there is insufficient evidence to reject the null hypothesis of zero average effects.
Our numerical equivalences simplify analysis and interpretation, and none of the IPT es-
timates is significantly different from zero despite usually having smaller standard errors
than the corresponding estimates based on maximum likelihood. In the second applica-

1Specifically, IPT coincides with Hainmueller’s (2012) entropy balancing estimator when the propensity
score is estimated with the logit model.
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tion, we replicate Sant’Anna and Zhao’s (2020) analysis of the NSW–CPS data, which was
previously analyzed by LaLonde (1986) and many others. We show that many of the esti-
mates reported by Sant’Anna and Zhao (2020) would have been identical to their preferred
estimates had they used IPT to estimate the propensity score in all cases.

We also supplement this paper with a companion Stata package, teffects2, avail-
able at the Statistical Software Components (SSC) Archive. Our package implements IPW,
AIPW, and IPWRA estimators of the ATE and ATT under unconfoundedness, with several
approaches to estimate the weights, including IPT. The package can also be used to es-
timate the ATT in difference-in-differences settings after a suitable transformation of the
outcome variable. This provides a novel implementation of the doubly robust difference-
in-differences (DRDID) estimator proposed by Sant’Anna and Zhao (2020).

Literature Review

This paper builds on a body of research on estimating average treatment effects under the
assumption of unconfoundedness. We focus on three classes of estimators: inverse proba-
bility weighting (IPW), as in Hirano, Imbens, and Ridder (2003), augmented inverse proba-
bility weighting (AIPW), as in Robins, Rotnitzky, and Zhao (1994), and inverse probability
weighted regression adjustment (IPWRA), as in Wooldridge (2007) and Słoczyński and
Wooldridge (2018). These classes of estimators, as well as several others, were surveyed
by Imbens and Wooldridge (2009), Abadie and Cattaneo (2018), and Uysal (2024).

Each of the classes of estimators we consider requires a first-step estimation of the
propensity score. This is typically done using maximum likelihood estimation (MLE) of
a standard binary response model for treatment assignment (e.g., logit or probit). How-
ever, this estimation approach does not guarantee that any desirable balancing properties
are satisfied in finite samples. In contrast, various “covariate balancing” estimators of the
propensity score are explicitly constructed with these properties in mind; they are also tai-
lored to the specific parameter of interest (e.g., ATE or ATT) to improve the statistical
properties of the corresponding treatment effect estimator.

Following the early work on inverse probability tilting (IPT) by Egel, Graham, and
Pinto (2008) and Graham, Pinto, and Egel (2012, 2016), many papers have proposed al-
ternative covariate balancing procedures for estimating average treatment effects. Hain-
mueller (2012) suggested estimating the inverse probability weights directly—subject to
balancing and normalizing constraints—rather than estimating the propensity score first
and then inverting it to obtain the weights. Known as “entropy balancing,” this procedure
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was designed to estimate the ATT and was later shown to be identical to IPT when the latter
uses the logit model (Zhao and Percival, 2017; Tan, 2020). Imai and Ratkovic (2014) pro-
posed using different moment conditions than those in Egel, Graham, and Pinto (2008) and
Graham, Pinto, and Egel (2012) when estimating the ATE; however, the resulting estimator
lacks some desirable theoretical properties of IPT, such as double robustness. On the other
hand, Imai and Ratkovic’s (2014) moment conditions for estimating the ATT are the same
as in IPT, which implies that the resulting estimator is also equivalent to IPT (as well as
to entropy balancing when the logit model is used). Zubizarreta (2015) relaxed the exact
balancing requirements of earlier methods and proposed estimating weights that minimize
variance subject to approximate balancing constraints. Zhao (2019) unified and general-
ized much of the earlier work by introducing a covariate balancing framework based on
optimizing loss functions tailored to a given estimand. Sant’Anna, Song, and Xu (2022)
proposed estimating the propensity score by maximizing balance across the entire covariate
distribution rather than in selected functions of the covariates.

Most of the early work on covariate balancing focused on addressing missing data
problems and estimating average treatment effects under unconfoundedness. However,
recent research has also applied similar ideas to estimating various parameters of interest
in difference-in-differences (Sant’Anna and Zhao, 2020; Callaway and Sant’Anna, 2021)
and instrumental variables settings (Heiler, 2022; Sant’Anna, Song, and Xu, 2022; Singh
and Sun, 2024; Słoczyński, Uysal, and Wooldridge, 2025).

This paper is also related to the important work of Robins, Sued, Lei-Gomez, and
Rotnitzky (2007), Kline (2011), Chattopadhyay and Zubizarreta (2023), and Bruns-Smith,
Dukes, Feller, and Ogburn (2025) demonstrating numerical equivalences between regres-
sion adjustment and weighting estimators of average treatment effects, under the constraint
that both the potential outcome means and the weights are linear in covariates. While the
weights may generally be approximated as a linear function of a high-dimensional dictio-
nary, as in Chernozhukov, Newey, and Singh (2022) and Bruns-Smith, Dukes, Feller, and
Ogburn (2025), the corresponding parametric restriction is unlikely to be plausible in low-
dimensional settings, especially since it is equivalent to assuming an inverse linear model
for the propensity score. In such settings, some of the estimated weights are likely to be
negative, which invalidates the sample boundedness property of the resulting estimator (cf.
Robins, Sued, Lei-Gomez, and Rotnitzky, 2007).

In this paper, we extend and generalize this earlier work by demonstrating that the
numerical equivalences between the IPW, AIPW, and IPWRA estimators are driven by the

5



IPT moment conditions rather than parametric restrictions on the propensity score or the
weights. Unlike our paper, the results in Robins, Sued, Lei-Gomez, and Rotnitzky (2007),
Kline (2011), Chattopadhyay and Zubizarreta (2023), and Bruns-Smith, Dukes, Feller, and
Ogburn (2025) are specific to the inverse linear model for the propensity score. (Most
of these results are also limited to IPW.) Under this strong parametric restriction, which
our paper does not make, IPW, AIPW, and IPWRA with IPT moment conditions are also
numerically equivalent to (linear) regression adjustment.

Plan of the Paper

We organize the paper as follows. In Section 2, we review the estimation problems solved
by the IPT weights for the ATE and the ATT and discuss some simple implications. In
Section 3, we derive the equivalences among various IPT-based estimators of the ATE and
then the IPT-based estimators of the ATT. We emphasize that since we are establishing
numerical equivalences, we do not need to, and do not, state the assumptions under which
the estimators are consistent. These have been covered elsewhere and are well known.
In Section 4, we discuss the consequences that the algebraic equivalence results have for
estimating local average treatment effects with instrumental variables and heterogeneous
treatment effects in difference-in-differences settings. In Section 5, we discuss our empir-
ical applications. In Section 6, we conclude. Our proofs are provided in the Appendix. In
the Supplemental Appendix, we briefly discuss implementation of IPT in R and Stata.

2 Covariate Balancing

In a general missing data setting, Egel, Graham, and Pinto (2008) and Graham, Pinto, and
Egel (2012, 2016) introduced inverse probability tilting (IPT) as a method for estimating
the propensity score, along with other parameters of interest. In this section, we review the
estimation problems solved by this method in the binary treatment case.

Let W denote the binary treatment indicator, and define the propensity score as P(W =

1|X = x). Assume an index model, p(xγ), where x is 1×K, γ is K×1, and x1 ≡ 1 ensures
an intercept. Although p(xγ) is typically taken to be logit, our results apply more generally
to any index model, including probit, complementary log-log, linear, and inverse linear
models. Let Y (0) and Y (1) denote the potential outcomes. Recall that the ATE and ATT
are defined as

τate = E [Y (1)−Y (0)]
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and

τatt = E [Y (1)−Y (0)|W = 1] .

However, we emphasize that the results in this paper pertain to algebraic equivalences, and
therefore, we do not discuss the identification of population parameters.

To fix ideas, consider the case where p(xγ) is logit, i.e., p(xγ)= exp(xγ)/ [1+ exp(xγ)].
In practice, the logit model is often conflated with its estimation via maximum likelihood,
in which case, for a sample of size N, the maximum likelihood estimator γ̂mle solves the
first-order condition:

N

∑
i=1

X′i [Wi− p(Xiγ̂mle)] = 0. (2.1)

IPT replaces this condition with a different set of moment equations for estimating γ . While
our discussion below is not limited to the logit case, the point is that even when the logit
model is used, estimation need not rely on maximum likelihood; it can proceed via the
method of moments instead. When W is a treatment indicator, the IPT moment conditions
proposed by Egel, Graham, and Pinto (2008) and Graham, Pinto, and Egel (2012) for
estimating E[Y (1)] are

E
[

W
p(Xγ)

X′
]
= E(X′), (2.2)

which follow immediately by iterated expectations when p(Xγ) = P(W = 1|X) = E(W |X).
(If we were considering identification, we would need to assume, at a minimum, that
p(Xγ)> 0 with probability one.) The sample analog of (2.2) is

N−1
N

∑
i=1

WiXi

p(Xiγ̂1,ipt)
= X̄, (2.3)

and these equations define the IPT estimator of γ , γ̂1,ipt , regardless of the specific model
chosen for P(W = 1|X = x). Note that we have put a “1” subscript on γ̂1,ipt because, in the
treatment effects setting, there is another set of moment conditions for estimating E[Y (0)]
that leads to a different IPT estimator of γ . Again, by iterated expectations,

E
[

1−W
1− p(Xγ)

X′
]
= E(X′), (2.4)

and this leads to the sample analog:

N−1
N

∑
i=1

(1−Wi)Xi

1− p(Xiγ̂0,ipt)
= X̄. (2.5)
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In general, γ̂0,ipt 6= γ̂1,ipt . However, because 1 ∈ Xi, it follows immediately that

N−1
N

∑
i=1

Wi

p(Xiγ̂1,ipt)
= 1 (2.6)

and

N−1
N

∑
i=1

1−Wi

1− p(Xiγ̂0,ipt)
= 1. (2.7)

These two equations are key, as the summands in (2.6) are the weights for estimating
E[Y (1)] in IPW estimation, and those in (2.7) are the weights used in estimating E[Y (0)],
as we review in Section 3. Equations (2.6) and (2.7) show that the IPT weights are auto-
matically normalized for estimating the ATE. That is, the sample mean of the weights is
not stochastic but instead equal to one by construction. These equations also indicate that
the IPT estimator of the ATE will require estimating the propensity score twice, with one
set of predicted probabilities used to estimate E[Y (1)] and another to estimate E[Y (0)].

For estimating the ATT, the moment equations used by Egel, Graham, and Pinto (2008)
and Graham, Pinto, and Egel (2016) are

E(X′|W = 1) =
1
ρ
·E(W ·X′) =

1
ρ
·E
[

p(Xγ)(1−W )

1− p(Xγ)
·X′
]
,

where ρ = P(W = 1). Using ρ̂ = N1/N, where N1 is the number of treated units, the K

sample moment conditions are

N−1
1

N

∑
i=1

WiX′i =

(
N1

N

)−1

N−1
N

∑
i=1

p(Xiγ̂0,ipt)(1−Wi)

1− p(Xiγ̂0,ipt)
·X′i

= N−1
1

N

∑
i=1

p(Xiγ̂0,ipt)(1−Wi)

1− p(Xiγ̂0,ipt)
·X′i

or

X̄′1 = N−1
1

N

∑
i=1

p(Xiγ̂0,ipt)(1−Wi)

1− p(Xiγ̂0,ipt)
·X′i, (2.8)

where X̄1 = N−1
1 ∑

N
i=1WiXi. Because 1 ∈ Xi, (2.8) implies

N1 =
N

∑
i=1

p(Xiγ̂0,ipt)(1−Wi)

1− p(Xiγ̂0,ipt)
,

which implies that the weights used in the IPW estimation of the ATT sum to the number
of treated units. In other words, like in the case of the ATE, the IPT weights for estimating
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the ATT are automatically normalized.
It may seem surprising that we use γ̂0,ipt to denote the IPT estimator of γ in the context

of estimating the ATT, given that we used the same notation in equations (2.5) and (2.7)
above. This is fully warranted, however, because this estimator is in fact the same as the
IPT estimator defined by equation (2.5). Indeed, as shown by Tan (2020), the moment
conditions in (2.5), which balance the weighted covariates of the comparison group with
those of the overall sample, are algebraically equivalent to the conditions in (2.8), which
instead balance them with the treated group, but using a different set of weights. To see
this equivalence, we can rewrite the sample moment conditions in (2.5) as

N−1
N

∑
i=1

(
1−Wi

1− p(Xiγ̂0,ipt)
−1
)
·X′i = 0,

which, after simple algebra, can be expressed as

N−1
N

∑
i=1

p(Xiγ̂0,ipt)(1−Wi)

1− p(Xiγ̂0,ipt)
·X′i = N−1

N

∑
i=1

WiX′i,

and this, in turn, is easily seen as equivalent to equation (2.8).
It is also useful to briefly compare the IPT moment conditions for estimating the ATE

with a subsequent proposal by Imai and Ratkovic (2014), known as the “covariate balanc-
ing propensity score (CBPS),” which uses different moment conditions to obtain a single
estimator of γ . Again, if the propensity score is correctly specified then, by iterated expec-
tations,

E(X′) = E
[

W
p(Xγ)

X′
]
= E

[
1−W

1− p(Xγ)
X′
]
. (2.9)

Rather than using the implications of (2.9) separately, which is what IPT does, Imai and
Ratkovic (2014) use the second equality to obtain the following sample moment conditions:

N−1
N

∑
i=1

Wi

p(Xiγ̂cbps)
X′i = N−1

N

∑
i=1

1−Wi

1− p(Xiγ̂cbps)
X′i. (2.10)

After simple algebra, the moment conditions can be expressed as

N

∑
i=1

(
Wi− p(Xiγ̂cbps)

p(Xiγ̂cbps)
[
1− p(Xiγ̂cbps)

])X′i = 0. (2.11)

Comparing (2.11) with (2.1), we can see that the CBPS approach—when applied to the
logit model—weights the MLE moment conditions by the estimated inverse conditional
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variance, Var(Wi|Xi).
Because the first element of Xi is unity, (2.10) also implies that

N

∑
i=1

Wi

p(Xiγ̂cbps)
=

N

∑
i=1

1−Wi

1− p(Xiγ̂cbps)
. (2.12)

Equation (2.12) shows that the weights appearing in the IPW estimates of E[Y (1)] and
E[Y (0)] sum to the same value, but that common value is not necessarily the sample size,
N. In other words, when these are used as weights in IPW, the CBPS weights are not
automatically normalized.

Finally, when estimating the ATT, Imai and Ratkovic (2014) suggest using the moment
conditions in equation (2.8), following the approach of Egel, Graham, and Pinto (2008)
and Graham, Pinto, and Egel (2016). This implies that the IPT and CBPS estimators of the
ATT are the same. When using the logit model, as shown by Tan (2020), both approaches
are also numerically identical to the entropy balancing estimator of Hainmueller (2012).2

3 Equivalence of Estimators

In this section, we establish numerical equivalences among three different classes of esti-
mators that incorporate inverse probability weighting, starting with estimators of the ATE.

3.1 Estimators of the ATE

The three estimators we consider are among the most popular alternatives to OLS estima-
tion of an additive linear model when unconfoundedness is assumed to hold: IPW, AIPW,
and IPWRA. As we establish algebraic equivalence, we do not impose assumptions beyond
those necessary for the existence of estimates for a given sample. This simply means that
the estimated propensity scores are strictly between zero and one for all i.

The IPW estimator of τate using the IPT weights is

τ̂ate,ipt = µ̂1,ipt − µ̂0,ipt = N−1
N

∑
i=1

WiYi

p(Xiγ̂1,ipt)
− N−1

N

∑
i=1

(1−Wi)Yi

1− p(Xiγ̂0,ipt)
, (3.13)

where the subscript “ipt” indicates the use of IPT weights. See, e.g., Wooldridge (2010,
Section 21.3) for a variant of this estimator with MLE-based weights and Egel, Graham,

2The three estimators of the ATT will no longer coincide if, in the case of CBPS, the IPT moment con-
ditions are combined with the first-order conditions of the maximum likelihood estimator (the so-called
“overidentified CBPS”). Likewise, the entropy balancing estimator will differ from IPT and CBPS if its
implementation constrains higher moments of the covariates to be balanced, too.
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and Pinto (2008) and Graham, Pinto, and Egel (2012) for IPT. We know from (2.6) and
(2.7) that the weights in both weighted averages are automatically normalized.

The AIPW estimator with IPT weights, which we refer to as AIPT, is also the difference
in estimates of µ1 ≡ E[Y (1)] and µ0 ≡ E[Y (0)]; that is, τ̂ate,aipt = µ̂1,aipt− µ̂0,aipt . For µ1,

µ̂1,aipt = N−1
N

∑
i=1

Wi

(
Yi−Xiβ̂1

)
p(Xiγ̂1,ipt)

+ N−1
N

∑
i=1

Xiβ̂1, (3.14)

where remember that 1 ∈ Xi. Although it is not important for the equivalence result, the
estimates β̂1 typically come from an OLS regression of Yi on Xi using Wi = 1 (treated units).
The first term in (3.14) is a weighted average of the resulting residuals over the treated units.
The weights are exactly those appearing in µ̂1,ipt and are therefore normalized.3

For µ0, the AIPT estimator is

µ̂0,aipt = N−1
N

∑
i=1

(1−Wi)
(

Yi−Xiβ̂0

)
1− p(Xiγ̂0,ipt)

+ N−1
N

∑
i=1

Xiβ̂0, (3.15)

where β̂0 are probably the OLS estimates from a regression of Yi on Xi using Wi = 0.
The third estimator we consider is the IPWRA estimator with IPT weights, which we

refer to as IPTRA. For µ1, we first solve a weighted least squares (WLS) problem,

min
b1

N−1
N

∑
i=1

Wi

p̂i
(Yi−Xib1)

2 , (3.16)

where p̂i = p(Xiγ̂1,ipt) are the IPT propensity score estimates. Given the WLS estimates β̃1

from (3.16), µ1 is estimated by averaging the fitted values across all observations, as in the
case of linear regression adjustment:

µ̂1,iptra = N−1
N

∑
i=1

Xiβ̃1 = X̄β̃ 1. (3.17)

The IPTRA estimator of µ0, µ̂0,iptra, uses the untreated units with weights
(
1− p(Xiγ̂0,ipt)

)−1,
and produces β̃0. The final IPTRA estimator of the ATE is given by τ̂ate,iptra = µ̂1,iptra−
µ̂0,iptra = X̄β̃ 1− X̄β̃ 0.

When the inverse probability weights are obtained using MLE, CBPS, or some other

3Normalization is less important in AIPW than in IPW. Knaus (2024) shows that “unnormalized” AIPW,
unlike unnormalized IPW, can still be expressed as a weighted average of observed outcomes with weights
that sum to one. This normalization is automatic under standard implementations of outcome regressions.
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method of moments procedure, τ̂ate,ipw, τ̂ate,aipw, and τ̂ate,ipwra are generally different. In
fact, τ̂ate,ipw and τ̂ate,aipw do not generally use normalized weights, and so one could have
five different estimates using the same estimated weights: IPW, normalized IPW (NIPW),
AIPW, normalized AIPW (NAIPW), and IPWRA. (IPWRA is always normalized.) Strik-
ingly, when IPT weights are used instead, all of these estimates are identical.

Proposition 3.1. Let γ̂1,ipt be the estimates from the IPT estimation in equation (2.3), with

p̂i = p(Xiγ̂1,ipt)> 0 for all i. Then µ̂1,ipt , µ̂1,aipt , and µ̂1,iptra are numerically identical. The

same is true of µ̂0,ipt , µ̂0,aipt , and µ̂0,iptra, which means that

τ̂ate,ipt = τ̂ate,aipt = τ̂ate,iptra.

The implication of Proposition 3.1 is that if one uses the IPT weights in estimating both µ0

and µ1, where conditional means E[Y (0)|X] and E[Y (1)|X] are modeled linearly, then three
prominent estimators of the ATE are numerically identical; moreover, the IPW and AIPW
versions are automatically normalized.

3.2 Estimators of the ATT

We now establish the equivalence of several prominent estimators of the ATT when the IPT
weights from equation (2.8) are used. Recall that

τatt = E[Y (1)|W = 1]−E[Y (0)|W = 1] ≡ µ1|1−µ0|1,

and the first term is always consistently estimated using the sample mean of Yi over the
treated units, Ȳ1. The IPW estimator for the second term, using the IPT weights, is

µ̂0|1,ipt = N−1
1

N

∑
i=1

p(Xiγ̂0,ipt)(1−Wi)Yi

1− p(Xiγ̂0,ipt)
. (3.18)

As noted earlier, the weights in (3.18) sum to the number of treated units; thus, they are
automatically normalized. The same weights also appear in the AIPW estimator. There-
fore, the normalized and unnormalized IPW estimators coincide, as do the normalized and
unnormalized AIPW estimators. Specifically, the AIPW estimator of µ0|1 is

µ̂0|1,aipt = N−1
1

N

∑
i=1

p̂i (1−Wi)

1− p̂i

(
Yi−Xiβ̂0

)
+ N−1

1

N

∑
i=1

WiXiβ̂0

= N−1
1

N

∑
i=1

p̂i (1−Wi)Yi

1− p̂i
− N−1

1

N

∑
i=1

p̂i (1−Wi)Xiβ̂0

1− p̂i
+ X̄1β̂0, (3.19)
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where p̂i = p(Xiγ̂0,ipt) are now the IPT propensity score estimates and β̂0 is typically the
OLS estimator from regressing Yi on Xi using Wi = 0.

Finally, the IPWRA estimator of µ0|1, using the weights from (2.8), is

µ̂0|1,iptra = X̄1β̃0,

where β̃0 now solves the WLS problem:

min
b0

N−1
N

∑
i=1

p̂i (1−Wi)

1− p̂i
(Yi−Xib0)

2 , (3.20)

where p̂i = p(Xiγ̂0,ipt). We have the following equivalence result.

Proposition 3.2. Let γ̂0,ipt be the estimators solving (2.8) with p̂i = p(Xiγ̂0,ipt)< 1 for all

i. Then, the IPW, AIPW, and IPWRA estimates of µ0|1, using the IPT weights and linear

conditional means in the latter two cases, are identical. Therefore, the three estimates of

τatt are identical.

Similar to Proposition 3.1, the implication of Proposition 3.2 is that if one uses the IPT
weights in estimating µ0|1 as well as a linear model for E[Y (0)|X], then the IPW, AIPW,
and IPWRA estimators of the ATT are numerically identical; moreover, the IPW and AIPW
versions are automatically normalized.

4 Implications for Instrumental Variables and Difference-in-Differences Settings

In this section, we briefly discuss the implications of the results in Section 3 for estimating
local average treatment effects with instrumental variables and heterogeneous treatment
effects in difference-in-differences settings.

4.1 Instrumental Variables

The results in Section 3 have implications for estimators of the local average treatment
effect (LATE) and the local average treatment effect on the treated (LATT) when using
control variables X; a recent treatment is Słoczyński, Uysal, and Wooldridge (2022), which
we follow here. As before, W is a treatment variable. We assume it to be binary, although
this can be easily relaxed. We also have a binary instrumental variable, Z.

It follows from Frölich (2007) that many estimators of the LATE are ratios of estimators

13



of the ATE,

τ̂late =
τ̂ate,Y |Z
τ̂ate,W |Z

,

where τ̂ate,Y |Z is an estimator of the ATE where Y is the outcome, Z plays the role of the
treatment, and the covariates X are used to account for confounders of Z. Again, we are
only concerned with equivalences and not statistical properties. The denominator, τ̂ate,W |Z ,
is an estimated ATE where W is the outcome and Z again is the treatment indicator, with
covariates X. It follows from Proposition 3.1 that when linear conditional means are used
for both Y and W , and IPT is used for the weights, estimators of the LATE based on IPW,
AIPW, and IPWRA are all identical. The inverse probability weights, in this case, for both
the numerator and the denominator, are based on the instrument propensity score:

P(Z = 1|X) = q(Xδ ).

It should be noted, however, that unlike in the case of the ATE, where the nature of Y is
generally unspecified, here it may be impractical to use the linear model in the denominator
when W is binary. See Słoczyński, Uysal, and Wooldridge (2022) for using other doubly
robust estimators to exploit the binary nature of W and maybe special features of Y . In such
cases, however, the numerical equivalence results no longer hold.

Estimators of the LATT that incorporate control variables X can be written as the ratio
of estimators of the ATT, where the instrument plays the role of the treatment variable:

τ̂latt =
τ̂att,Y |Z
τ̂att,W |Z

,

where τ̂att,Y |Z and τ̂att,W |Z are both estimators of the ATT with “treatment” variable Z and
outcome variables Y and W , respectively. If these estimators use the appropriate IPT
weights, as in Proposition 3.2, then it follows immediately that the estimators of τlatt based
on IPW, AIPW with linear regression functions, and IPWRA with linear regression func-
tions are all numerically the same. Also, recall that the normalized and unnormalized
estimators of the ATT are identical when using these weights.

4.2 Difference-in-Differences

Some popular estimators in difference-in-differences (DID) settings are based on applying
standard treatment effect estimators after suitably transforming the outcome variable. For
example, Abadie (2005), with two time periods, proposes applying IPW to the differences

14



Yi2−Yi1, where Yit is the outcome for unit i in period t. Abadie (2005) uses maximum
likelihood estimation of the propensity score to construct the inverse probability weights.
Sant’Anna and Zhao (2020) instead develop a doubly robust estimator of the ATT. The
estimator uses a structure similar to equation (3.19), although Sant’Anna and Zhao (2020)
also normalize the weights and replace the OLS estimates of the conditional mean of the
untreated potential change in outcomes with the WLS estimates similar to equation (3.20);
they also use the IPT weights from equation (2.8). Strikingly, the results in Section 3 imply
that all these additional modifications have no impact on the final estimate of the ATT
when the IPT weights are used; in other words, the simple IPW estimator in Abadie (2005)
is numerically identical to Sant’Anna and Zhao (2020) when both use the IPT moment
conditions to estimate the propensity score.

Similar conclusions hold with many periods and staggered interventions. Callaway and
Sant’Anna (2021) extend Sant’Anna and Zhao (2020) to estimate ATTs by treatment co-
hort (i.e., the first period of treatment), g, and calendar time, t. To estimate these ATTs, τgt ,
Callaway and Sant’Anna (2021) apply different versions of AIPW and IPWRA to differ-
ences Yit −Yi,g−1, where Yi,g−1 is the outcome in the period just before the first treatment
period for treatment cohort g. Callaway and Sant’Anna (2021) emphasize that the compar-
ison group can either consist of the never treated (NT) cohort or the NT cohort plus other
cohorts that are first treated in period t + 1 or later (“not yet treated”). One of the estima-
tors recommended by Callaway and Sant’Anna (2021) is AIPW with the IPT weights from
equation (2.8). It follows immediately that applying IPW, AIPW, or IPWRA to Yit −Yi,g−1

with treatment indicator Dig (indicating treatment cohort) and controls Xi delivers identical
estimates of the τgt when IPT weights are used. This is true even when t < g− 1, which
provides event study graphs for studying the existence of pre-trends.

An alternative transformation in the staggered intervention settings uses data on all
pre-treatment outcomes by removing the average of the outcomes over all pre-treatment
periods: Ẏitg ≡ Yit − (g−1)−1

∑
g−1
s=1 Yis. As shown in Lee and Wooldridge (2024), under

standard no anticipation and conditional parallel trends assumptions, one can apply vari-
ous treatment effect estimators to the cross-sectional data

{(
Ẏitg,Dig,Xi

)
: i = 1, ...,N

}
to

consistently estimate τgt . Again, the results in Section 3 immediately imply that the IPW,
AIPW, and IPWRA estimators with the IPT weights from equation (2.8) are all identical
when applied to these data once one chooses a suitable comparison group.
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5 Empirical Applications

In this section, we illustrate our findings with two empirical applications, beginning with a
replication of a prominent study of the causal effects of cash transfers on longevity (Aizer,
Eli, Ferrie, and Lleras-Muney, 2016) and concluding with a reanalysis of the empirical
application in Sant’Anna and Zhao (2020).

5.1 The Effects of Cash Transfers on Longevity

Aizer, Eli, Ferrie, and Lleras-Muney (2016) study the long-run impacts of the Mothers’
Pension (MP) program, which was the first government-sponsored welfare program in the
prewar U.S. The outcome studied by the authors is the log age at death of children of the
program participants. A key strength of the original study is in its careful construction of
the comparison group, which consists only of mothers who were initially deemed eligible
for participation but were later rejected. Still, Słoczyński (2022) argues that some of the
conclusions of this paper are not robust to treatment effect heterogeneity.

In our application, we use the same data as Aizer, Eli, Ferrie, and Lleras-Muney (2016)
and Słoczyński (2022). We consider three covariate specifications and two sources of infor-
mation on dates of death: program records and death certificates. In our first specification,
we control for cohort and state fixed effects. In our second specification, in line with Aizer,
Eli, Ferrie, and Lleras-Muney (2016), we replace state fixed effects with a battery of in-
dividual, county, and state characteristics. In our final specification, we reintroduce state
fixed effects without dropping any other covariates.4

Table 1 reports a number of estimates of the effects of cash transfers on longevity. As
in Aizer, Eli, Ferrie, and Lleras-Muney (2016), the OLS estimates from an additive model,
which controls for program participation and covariates but not interactions between the
two, strongly suggest that cash transfers positively influenced the longevity of the children
of their beneficiaries. However, in line with the replication in Słoczyński (2022), the major-
ity of the estimates of the ATE and ATT are smaller or much smaller than the OLS estimates
and not statistically significant. At the same time, there is a clear difference between the
two panels of Table 1 that report weighting and doubly robust estimators based on MLE
and IPT weights. In the case of MLE, there is a wide variation in estimates, which range
from 0.0014 to 0.0597 for the ATE and from –0.0014 to 0.0645 for the ATT. Conditional on

4The final specification in Aizer, Eli, Ferrie, and Lleras-Muney (2016) uses county rather than state fixed
effects but is otherwise identical. In our application, using county fixed effects is not feasible because, in
several counties, every eligible applicant was treated, resulting in a failure of overlap.
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Table 1: Replication of Aizer, Eli, Ferrie, and Lleras-Muney (2016)

(1) (2) (3) (4)
OLS 0.0157*** 0.0158*** 0.0163*** 0.0146**

(0.0058) (0.0059) (0.0059) (0.0059)
ATE ATT ATE ATT ATE ATT ATE ATT

RA 0.0105* 0.0096 0.0100 0.0092 0.0100 0.0090 0.0080 0.0069
(0.0062) (0.0063) (0.0068) (0.0071) (0.0071) (0.0075) (0.0071) (0.0075)

MLE weights
ATE ATT ATE ATT ATE ATT ATE ATT

IPW 0.0597*** 0.0645*** 0.0438 0.0391 0.0113 0.0002 0.0093 –0.0014
(0.0164) (0.0181) (0.0886) (0.1002) (0.1216) (0.1381) (0.1222) (0.1387)

NIPW 0.0107* 0.0099 0.0064 0.0047 0.0025 0.0001 0.0014 –0.0006
(0.0061) (0.0063) (0.0072) (0.0077) (0.0072) (0.0077) (0.0072) (0.0076)

AIPW 0.0102* 0.0093 0.0056 0.0040 0.0042 0.0023 0.0024 0.0007
(0.0062) (0.0064) (0.0069) (0.0073) (0.0072) (0.0076) (0.0072) (0.0077)

NAIPW 0.0102* 0.0093 0.0056 0.0039 0.0042 0.0023 0.0024 0.0007
(0.0062) (0.0064) (0.0069) (0.0073) (0.0072) (0.0076) (0.0072) (0.0076)

IPWRA 0.0101 0.0092 0.0072 0.0058 0.0050 0.0028 0.0037 0.0019
(0.0062) (0.0064) (0.0066) (0.0069) (0.0069) (0.0073) (0.0069) (0.0073)

IPT weights
ATE ATT ATE ATT ATE ATT ATE ATT

IPW 0.0101 0.0092 0.0076 0.0063 0.0057 0.0040 0.0047 0.0032
(0.0062) (0.0064) (0.0066) (0.0069) (0.0067) (0.0071) (0.0067) (0.0071)

NIPW 0.0101 0.0092 0.0076 0.0063 0.0057 0.0040 0.0047 0.0032
(0.0062) (0.0064) (0.0066) (0.0069) (0.0067) (0.0071) (0.0067) (0.0071)

AIPW 0.0101 0.0092 0.0076 0.0063 0.0057 0.0040 0.0047 0.0032
(0.0062) (0.0064) (0.0066) (0.0069) (0.0067) (0.0071) (0.0067) (0.0071)

NAIPW 0.0101 0.0092 0.0076 0.0063 0.0057 0.0040 0.0047 0.0032
(0.0062) (0.0064) (0.0066) (0.0069) (0.0067) (0.0071) (0.0067) (0.0071)

IPWRA 0.0101 0.0092 0.0076 0.0063 0.0057 0.0040 0.0047 0.0032
(0.0062) (0.0064) (0.0066) (0.0069) (0.0067) (0.0071) (0.0067) (0.0071)

State fixed effects X X X
Cohort fixed effects X X X X
Individual controls X X X
State characteristics X X X

County characteristics X X X

Observations 7,860 7,859 7,859 7,857

Notes: The source of data is Aizer, Eli, Ferrie, and Lleras-Muney (2016). The outcome of interest is the log age at death, as reported in
program records (specifications 1–3) or on the death certificate (specification 4). “OLS” corresponds to the OLS estimation of an additive
linear model. “RA” corresponds to the regression adjustment estimator, which is based on the OLS estimation of a fully interacted linear
model. The remaining estimators use a logit model for the propensity score and are defined in Section 3. Standard errors are in parentheses.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.
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choosing a specific covariate specification, the choice of an estimator can have a profound
impact on the researcher’s conclusion. On the other hand, in the case of IPT, this choice
is entirely inconsequential, as there are no differences across estimators conditional on a
particular specification choice. This illustrates Propositions 3.1 and 3.2, which demonstrate
the underlying numerical equivalences. Moreover, in the case of IPT, the standard errors
are usually slightly smaller than in the case of the corresponding estimates based on MLE.

5.2 The Effects of a Training Program on Earnings

A large number of papers, originating with LaLonde (1986), combine experimental data
from the evaluation of the National Supported Work (NSW) program with a nonexperi-
mental comparison group from the Current Population Survey (CPS) or the Panel Study
of Income Dynamics (PSID). The premise of this literature is that a successful nonexper-
imental estimation method should closely replicate the experimental estimate of the effect
of the program when combining the original treatment group with an artificial comparison
group (see, e.g., LaLonde, 1986; Dehejia and Wahba, 1999) or the “effect” of zero when
combining the latter with the original control group (see, e.g., Smith and Todd, 2005).

In our application, we closely follow a recent reanalysis of these data in Sant’Anna
and Zhao (2020), who restrict their attention to samples combining the CPS comparison
group and variants of the original control group, previously analyzed by LaLonde (1986),
Dehejia and Wahba (1999) (the “DW” sample), and Smith and Todd (2005) (the “early
RA” sample). As is standard in this literature, the outcome of interest is real earnings
in 1978. Because Sant’Anna and Zhao (2020) focus on various difference-in-differences
estimators, they often use the transformed outcome, Yi2−Yi1; here, this is equal to the
difference between real earnings in 1978 and real earnings in 1975. The baseline covariates
include age, years of education, real earnings in 1974, and indicator variables for less than
12 years of education, being married, being Black, and being Hispanic. Other covariate
specifications also include additional higher-order and interaction terms.

Table 2 replicates every estimate and standard error in Sant’Anna and Zhao’s Table 3,
while also reporting a number of additional results.5 The bottom line is that weighting and
doubly robust estimators perform quite well in replicating the true effect of zero; except for

5“TWFE” corresponds to τ̂ f e in Sant’Anna and Zhao (2020). This is the OLS estimate from a panel data
specification with real earnings in 1975 and 1978, a “treatment” indicator, and unit and year fixed effects.
“RA” corresponds to τ̂reg in Sant’Anna and Zhao (2020). IPW with MLE weights corresponds to τ̂ ipw,p.
NIPW with MLE weights corresponds to τ̂

ipw,p
std . NAIPW with MLE weights corresponds to τ̂dr,p. Finally, all

the estimates in the “IPT weights” panel are identical to Sant’Anna and Zhao’s preferred estimator, τ̂
dr,p
imp .
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Table 2: Replication of Sant’Anna and Zhao (2020)

LaLonde sample DW sample Early RA sample
TWFE 868** 868** 868** 2,092*** 2,092*** 2,092*** 1,136 1,136 1,136

(353) (359) (352) (459) (472) (458) (730) (752) (728)
RA –1,301*** –830** –1,041*** –230 402 27 –831 –264 –498

(350) (360) (358) (408) (426) (428) (583) (596) (591)
MLE weights

IPW –1,108*** –732 –685 188 –34 97 –516 –495 –337
(409) (534) (523) (459) (845) (793) (611) (781) (740)

NIPW –1,022** –564 –558 155 481 502 –515 –223 –165
(398) (487) (485) (452) (672) (653) (607) (718) (700)

AIPW –859** –613 –575 247 409 584 –434 –244 –124
(399) (513) (504) (449) (779) (727) (605) (753) (718)

NAIPW –871** –626 –597 253 408 514 –434 –246 –148
(396) (496) (491) (451) (691) (663) (605) (724) (701)

IPWRA –908** –590 –599 247 531 533 –443 –173 –143
(394) (467) (470) (452) (581) (577) (607) (682) (677)

IPT weights
IPW –901** –591 –599 253 520 524 –441 –176 –144

(394) (467) (470) (452) (588) (582) (607) (683) (677)
NIPW –901** –591 –599 253 520 524 –441 –176 –144

(394) (467) (470) (452) (588) (582) (607) (683) (677)
AIPW –901** –591 –599 253 520 524 –441 –176 –144

(394) (467) (470) (452) (588) (582) (607) (683) (677)
NAIPW –901** –591 –599 253 520 524 –441 –176 –144

(394) (467) (470) (452) (588) (582) (607) (683) (677)
IPWRA –901** –591 –599 253 520 524 –441 –176 –144

(394) (467) (470) (452) (588) (582) (607) (683) (677)
Linear X X X
DW X X X

ADW X X X

Observations 16,417 16,417 16,417 16,252 16,252 16,252 16,134 16,134 16,134

Notes: The source of data is LaLonde (1986). The outcome of interest is real earnings in 1978. “TWFE” corresponds to the OLS estimation
of a panel data specification with outcomes measured in 1975 and 1978, a “treatment” indicator, as well as unit and year fixed effects. “RA”
corresponds to the regression adjustment estimator, which is based on the OLS estimation of a fully interacted linear model with transformed
outcomes. The remaining estimators use transformed outcomes and a logit model for the propensity score, and are defined in Section 3. “Linear”
corresponds to a specification in which all covariates are included linearly. “DW” corresponds to a specification that includes all the covariates
in the linear specification as well as an indicator for zero earnings in 1974, age squared, age cubed divided by 1000, years of schooling squared,
and an interaction between years of schooling and real earnings in 1974. “ADW” corresponds to a specification that includes all the covariates in
the DW specification as well as interactions between married and real earnings in 1974 and between married and zero earnings in 1974. Standard
errors are in parentheses.
*Statistically significant at the 10% level; **at the 5% level; ***at the 1% level.
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the simplest covariate specification applied to the LaLonde sample, none of these estimates
are significantly different from the true effect. In addition, Sant’Anna and Zhao (2020)
argue that their preferred estimator based on IPT weights tends to have smaller standard
errors than estimators based on MLE weights. While this is true, Table 2 also illustrates
our previous point that Sant’Anna and Zhao’s (2020) estimator might be unnecessarily
complex; when using the IPT weights, even the simplest “unnormalized” IPW estimator is
numerically equivalent to it. Our standard errors, obtained together with the point estimates
using our companion Stata package, teffects2, are also identical to those reported by
Sant’Anna and Zhao (2020).

6 Conclusion

Applied researchers face many ways to adjust for covariates, but in this paper, we show
that several popular estimators are in fact identical under a simple condition. Specifically,
our results assume that the propensity score is estimated using inverse probability tilting, a
method of moments approach developed by Egel, Graham, and Pinto (2008) and Graham,
Pinto, and Egel (2012, 2016). Estimators based on or equivalent to this approach have al-
ready become popular in difference-in-differences settings (cf. Sant’Anna and Zhao, 2020)
and outside economics (cf. Hainmueller, 2012; Imai and Ratkovic, 2014). Our results, sim-
plifying the set of alternative estimators available to researchers, offer a novel rationale
for adopting this approach in various contexts, such as under unconfoundedness and in
instrumental variables and difference-in-differences settings.
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Appendix

Proof of Proposition 3.1 Consider estimating µ1; the argument for µ0 follows in the
same way. First, with p̂i ≡ p(Xiγ̂1,ipt), equation (2.6) implies that

N−1
N

∑
i=1

Wi/p̂i = 1.

The IPT estimator of µ1 is the first term in (3.13). Now, consider the AIPT estimator in
(3.14). Simple algebra shows it can be expressed as

µ̂1,aipt = N−1
N

∑
i=1

WiYi

p̂i
− N−1

N

∑
i=1

WiXiβ̂1

p̂i
+ N−1

N

∑
i=1

Xiβ̂1

= µ̂1,ipt − N−1
N

∑
i=1

WiXiβ̂1

p̂i
+ X̄β̂ 1

= µ̂1,ipt +

[
X̄−N−1

N

∑
i=1

WiXi

p̂i

]
β̂1

= µ̂1,ipt ,

where the last equality uses (2.3) (with an intercept explicitly included).
Now, consider the IPTRA estimator in (3.17). Given that 1 ∈ Xi, the first-order condi-

tion for the WLS estimator of β1, following from (3.16), is easily seen to imply that

N−1
N

∑
i=1

WiYi

p̂i
=

(
N−1

N

∑
i=1

WiXi

p̂i

)
β̃1.

The term on the left is, again, µ̂1,ipt . For the term on the right, use the IPT moment condi-
tions in (2.3), as before:

µ̂1,ipt = N−1
N

∑
i=1

WiYi

p̂i
=

(
N−1

N

∑
i=1

WiXi

p̂i

)
β̃1 = X̄β̃ 1 = µ̂1,iptra.

Repeating the same argument for µ0 completes the proof.

Proof of Proposition 3.2 Recall that µ0|1≡E[Y (0)|W = 1]. Redefine p̂i as p̂i≡ p(Xiγ̂0,ipt).
Using simple algebra, the AIPW estimator of µ0|1 using IPT weights, given in (3.19), can
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be written as

µ̂0|1,aipt = N−1
1

N

∑
i=1

p̂i (1−Wi)Yi

1− p̂i
− N−1

1

N

∑
i=1

p̂i (1−Wi)Xiβ̂0

1− p̂i
+ X̄1β̂0

= µ̂0|1,ipt +

[
X̄1−N−1

1

N

∑
i=1

p̂i (1−Wi)Xi

1− p̂i

]
β̂0

= µ̂0|1,ipt ,

where the final equality follows from equation (2.8), the IPT moment conditions for esti-
mating the ATT.

For the IPWRA estimator using the IPT weights, note that the first-order condition for
β̃0, following from (3.20), is

N

∑
i=1

p̂i (1−Wi)

1− p̂i
X′i
(

Yi−Xiβ̃0

)
= 0.

Focusing on the first element 1 ∈ Xi and dividing by N1, we can write

N−1
1

N

∑
i=1

p̂i (1−Wi)Yi

1− p̂i
= N−1

1

N

∑
i=1

p̂i (1−Wi)Xiβ̃0

1− p̂i

or, again using (2.8),

µ̂0|1,ipt = X̄1β̃0 = µ̂0|1,iptra.

This completes the proof.
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SUPPLEMENTAL APPENDIX FOR “COVARIATE BALANCING

AND THE EQUIVALENCE OF WEIGHTING AND DOUBLY

ROBUST ESTIMATORS OF AVERAGE TREATMENT EFFECTS”

TYMON SŁOCZYŃSKI∗ S. DERYA UYSAL†

JEFFREY M. WOOLDRIDGE‡

This appendix explains how to obtain IPT propensity score estimates in Stata and R, as
well as how to install and use our companion Stata package, teffects2. This package
implements IPW, AIPW, and IPWRA estimators of the ATE and ATT under unconfound-
edness, with several approaches to estimate the weights, including IPT. The package can
also be used to estimate the ATT in difference-in-differences settings after a suitable trans-
formation of the outcome variable. Throughout this appendix, as well as in teffects2, we
restrict our attention to the logit model. In what follows, among other things, we will show
how to estimate this model using the method of moments approach of Egel, Graham, and
Pinto (2008) and Graham, Pinto, and Egel (2012, 2016) instead of maximum likelihood.

Implementation in Stata

This code illustrates IPT estimation by reproducing the estimate in column 1 of Table 2,
which corresponds to the first entry in column 2 of Table 3 in Sant’Anna and Zhao (2020).
The parameter of interest is the ATT, and the estimation procedure is based on the sample
moment conditions in (2.5). The code can easily be modified for use in other applications.

First, we show how to reproduce this estimate using teffects2. To download this
package, type

ssc install teffects2, all

in the Command window. Then, run the following code:
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* Load the data

use lalonde, clear

* Restrict attention to the NSW control and CPS comparison units

keep if (dataset == 0 | dataset == 4) & treated == 0

* Recode the NSW control units as "treated" (cf. Smith and Todd, 2005)

replace treated = 1 if dataset == 0

* Specify outcome, treatment, and control variables

local Y diff

local W treated

local X age educ re74 nodegree married black hispanic

* Estimate the ATT using teffects2

teffects2 ipw (‘Y’) (‘W’ ‘X’, ipt), atet

teffects2 aipw (‘Y’ ‘X’) (‘W’ ‘X’, ipt), atet

teffects2 ipwra (‘Y’ ‘X’) (‘W’ ‘X’, ipt), atet

As implied by Proposition 3.2, the estimates (and standard errors) obtained with teffects2
ipw, teffects2 aipw, and teffects2 ipwra are identical, except for negligible differ-
ences due to floating-point precision. The output also matches the IPT estimate in column 1
of Table 2 as well as the first entry in column 2 of Table 3 in Sant’Anna and Zhao (2020).
For example, with teffects2 ipwra, we obtain:

. teffects2 ipwra (‘Y’ ‘X’) (‘W’ ‘X’, ipt), atet

Treatment effect estimation Number of obs = 16,417

Estimator : IPW regression adjustment

Outcome model : linear

Treatment model: logit IPT

------------------------------------------------------------------------------

| Robust

diff | Coefficient std. err. z P>|z| [95% conf. interval]

-------------+----------------------------------------------------------------

ATT | -901.2702 393.6127 -2.29 0.022 -1672.737 -129.8036

POmean | 2964.636 254.5088 11.65 0.000 2465.808 3463.464

------------------------------------------------------------------------------
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In line with Stata’s official teffects command, which only allows maximum likelihood
estimation of the propensity score, POmean corresponds to an estimate of the mean un-
treated outcome (when estimating the ATE) or the mean untreated outcome among the
treated (when estimating the ATT, as in the example above).

Second, we show how to obtain the underlying propensity score estimates, p(Xiγ̂0,ipt),
and how to reproduce the estimate of the ATT from scratch, i.e., without using teffects2.

* Download the data

use https://tslocz.github.io/lalonde.dta, clear

* Restrict attention to the NSW control and CPS comparison units

keep if (dataset == 0 | dataset == 4) & treated == 0

* Recode the NSW control units as "treated" (cf. Smith and Todd, 2005)

replace treated = 1 if dataset == 0

* Standardize nonbinary covariates

egen age_std = std(age)

egen educ_std = std(educ)

egen re74_std = std(re74)

* Specify outcome, treatment, and control variables

local Y diff

local W treated

local X age_std educ_std re74_std nodegree married black hispanic

* Set up the method of moments procedure

local eq0 (eq0: ((1 - ‘W’) * (1 + exp({that0: ‘X’ _cons})) - 1))

local inst0 instruments(eq0: ‘X’)

* Obtain the IPT propensity score estimates

gmm ‘eq0’, ‘inst0’

predict double xb0, xb equation(that0)

generate double p_hat0 = logistic(xb0)

* Estimate the ATT

generate double term = (p_hat0 * (1 - ‘W’) * ‘Y’) / (1 - p_hat0)
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summarize term

scalar m1_hat = r(mean)

summarize ‘Y’ if ‘W’ == 1

scalar m2_hat = r(mean)

summarize ‘W’

scalar m3_hat = r(mean)

scalar att = m2_hat - m1_hat / m3_hat

The final estimate, implementing the IPW estimator of the ATT with the IPT weights,
matches the teffects2 estimate above, as well as the appropriate estimates in Table 2 and
Sant’Anna and Zhao (2020):

. display att

-901.27028

Although this is not necessary to estimate the ATT, a researcher interested in the ATE also
needs to obtain p(Xiγ̂1,ipt) using the sample moment conditions in (2.3). To compute these
estimates, the code above should be modified as follows:

* Set up the method of moments procedure

local eq1 (eq1: (‘W’ * (1 + exp({that1: ‘X’ _cons})) / exp({that1:}) - 1))

local inst1 instruments(eq1: ‘X’)

* Obtain the IPT propensity score estimates

gmm ‘eq1’, ‘inst1’

predict double xb1, xb equation(that1)

generate double p_hat1 = logistic(xb1)

In this example, gmm fails to converge with default settings, but does converge under some
alternative optimization routines. The fact that obtaining p(Xiγ̂1,ipt) is more difficult than
obtaining p(Xiγ̂0,ipt) should be treated as informative rather than problematic, as it reflects
the underlying identification challenge—in the LaLonde (1986) data, it is simply very dif-
ficult to reweight the experimental subjects to resemble the CPS participants on average.

Implementation in R

As above, we show how to use IPT to reproduce the ATT estimate in column 1 of Table 2,
which corresponds to the first entry in column 2 of Table 3 in Sant’Anna and Zhao (2020).
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# Install and load the add-on package geex

install.packages("geex")

library(geex)

# Download the data

lalonde <- read.csv("https://tslocz.github.io/lalonde.csv")

# Restrict attention to the NSW control and CPS comparison units

nswcps <- subset(lalonde, (dataset %in% c(0, 4)) & treated == 0)

# Recode the NSW control units as "treated" (cf. Smith and Todd, 2005)

nswcps$W <- as.integer(nswcps$dataset == 0)

# Standardize nonbinary covariates

nswcps$age_std <- as.numeric(scale(nswcps$age))

nswcps$educ_std <- as.numeric(scale(nswcps$educ))

nswcps$re74_std <- as.numeric(scale(nswcps$re74))

# Specify outcome, treatment, and control variables

Y <- nswcps$diff

W <- nswcps$W

X <- model.matrix(

~ age_std + educ_std + re74_std + nodegree + married + black + hispanic,

data = nswcps

)

# Set up supporting objects

df <- data.frame(W = W, X, check.names = FALSE)

X_cols <- colnames(X)

# Specify starting values

p <- length(X_cols)

gamma_start <- numeric(p)

# Set up the method of moments procedure

score_eq0 <- function(data) {
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W_i <- data$W

X_i <- as.vector(as.matrix(data[X_cols]))

function(theta) {

eta_i <- sum(X_i * theta)

p_i <- plogis(eta_i)

((1 - W_i) / (1 - p_i) - 1) * X_i

}

}

# Obtain the IPT propensity score estimates

mest_eq0 <- m_estimate(

estFUN = score_eq0,

data = df,

root_control = setup_root_control(start = gamma_start)

)

gamma0 <- as.numeric(coef(mest_eq0))

p_hat0 <- as.vector(plogis(X %*% gamma0))

# Estimate the ATT

term <- (p_hat0 * (1 - W) * Y) / (1 - p_hat0)

m1_hat <- mean(term)

m2_hat <- mean(Y[W == 1])

m3_hat <- mean(W)

att <- m2_hat - m1_hat / m3_hat

The resulting estimate, implementing the IPW estimator of the ATT with the IPT weights,
matches both Stata estimates above, as well as the appropriate estimates in Table 2 and
Sant’Anna and Zhao (2020):

> att

[1] -901.2702

To obtain p(Xiγ̂1,ipt), the code above should be modified as follows:

# Set up the method of moments procedure

score_eq1 <- function(data) {

W_i <- data$W

X_i <- as.vector(as.matrix(data[X_cols]))
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function(theta) {

eta_i <- sum(X_i * theta)

p_i <- plogis(eta_i)

(W_i / p_i - 1) * X_i

}

}

# Obtain the IPT propensity score estimates

mest_eq1 <- m_estimate(

estFUN = score_eq1,

data = df,

root_control = setup_root_control(start = gamma_start)

)

gamma1 <- as.numeric(coef(mest_eq1))

p_hat1 <- as.vector(plogis(X %*% gamma1))

As in Stata, obtaining p(Xiγ̂1,ipt) is challenging; however, convergence is achievable with
alternative solver choices and better starting values, such as the MLE coefficients.
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