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0 Introduction

The implications of evolutionarily stable behavior in finite populations are the sub-
ject of a very active field of research in economics. Beginning with Schaffer (1989),
whose analysis was generalized by Vega-Redondo (1997), economists looked beyond
the popular perception of an evolutionarily stable strategy (ESS) as a refinement
of Nash equilibrium. This perception implicitly assumed an infinite population of
potential players for the game under consideration. The theory of ESS for finite
populations provided by Schaffer(1988) shows, that it is precisely this infinite popu-
lation assumption, which accounts for the general coincidence of ESS behavior and
symmetric Nash equilibrium. Without this assumption the two solution concepts
may propose different solutions to the game. These differences and the relation of
the two solution concepts ESS and Nash Equilibrium in general have since been
explored for a variety of games in several recent contributions (see Alōs-Ferrer and
Ania (2004), Hehenkamp et al. (2004), Leininger (2002,2003), Possajennikov (2003)
and Schenk-Hoppē (2000)). All these contributions analyse games, which belong to
the class of submodular aggregative games. The present note is concerned with a
general structural characteristic of this class of games, namely, that in these games
stability from an evolutionary point of view always means global stability: if a small
number of a mutant strategy cannot invade a given population, then neither can any
larger number of the same mutant strategy do so. This somewhat counterintuitive
conclusion is made precise by our Theorem in section 3. Section 1 presents the class
of submodular aggregative games, while section 2 provides the definition of finite
population ESS and its adaptation to the games under consideration. Section 4
applies our findings to an example from contest theory.

1 Submodular aggregative games

As in Alōs-Ferrer and Ania (2004) and Possajennikov (2003) we consider general-
ized aggregative games, which are symmetric. Symmetry means that all players
have identical strategy space S⊂ < and payoff function Π. A game of n players
is aggregative (Corchon,1994), if this function only depends on the player’s own
strategy si and an aggregate g(s1, ..., sn) ∈ < of all the stategies employed. Other
players behavior is only payoff-relevant for player i through its influence on the ag-
gregate. We assume the aggregator function g to be monotonically increasing in all
components.
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Definition 1:

A (generalized) symmetric aggregative game is a game
Γ = (N, S1 × ...× Sn, Π1(s1, ..., sn), ..., Πn(s1, ..., sn)) such that

i) Si = S ⊆ < for all i = 1, ..., n

ii) Πi(s1, ..., si, ..., sn) = Π(si, s−i) for i = 1, ..., n

where Π : Sn → < with Π(si, s−i) = Π(si, s
′
−i)

for any permutation s′−i of s−i.

iii) there exist g : Sn → < , increasing in all components, and

Π̄ : S ×< → < such that Π(si, s−i) = Π̄(si, g(si, s−i))

for all (si, s−i) ∈ Sn and i ∈ {1, ..., n}

The previous definition captures a large and economically important class of games
(see e.g. Possajennikov, 2003, Alōs-Ferrer and Ania, 2004, and Topkis, 1998, chapter
4). It contains Cournot games, rent-seeking contests, public-good provision games,
common resource extraction games, arms races and many others.

Aggregative n-player games reduce to the structure of a two-player game: for each
single player it is only payoff- relevant what the value of the aggregate is, and not
what the actions of other players are. This enables the straightforward definition of
submodularity for these games.

Definition 2:

i) A generalized aggregative game Γ is submodular (in individual strategy and
the aggregate), if Π̄ has decreasing differences; i.e. for all s′ ≥ s and g′ ≥ g

Π̄(s′, g′)− Π̄(s, g′) ≤ Π̄(s′, g)− Π̄(s, g)

- or equivalently -

Π̄(s′, g′)− Π̄(s′, g) ≤ Π̄(s, g′)− Π̄(s, g)
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ii) A generalized aggregative game Γ is strictly submodular (in individual
strategy and aggregate), if Π̄ has strictly decreasing differences; i.e. for all
s′ > s and g′ > g

Π̄(s′, g′)− Π̄(s, g′) < Π̄(s′, g)− Π̄(s, g)

Remark: It is well known (Topkis, 1998), that if Π̄ is twice continuously differen-
tiable, then Π̄ has decreasing differences if and only if ∂2Π̄

∂g∂s
≤ 0 everywhere.

Hence it is fairly simple to check in this case, whether a game Γ is submodular.

In submodular games the individual incentive to increase one’s action (variable)
decreases with increasing aggregate; hence individual action and the aggregate of
(others) individual actions are strategic substitutes. This basic fact will be used to
understand global stability of evolutionary equilibrium in these games. Since evo-
lutionary stability in finite populations is closely linked to maximization of relative
payoff (see the next section), we will read submodularity of the absolute payoff func-
tion Π̄ of a player as a statement about his relative payoff function. For symmetric
aggregative games the latter is a difference of Π̄ in the sense of Definition 2. De-
creasing differences of Π̄ mean, that the relative payoff of a strategy s′ against any
smaller strategy s decreases with increasing values of aggregate g.

2 Evolutionarily stable strategies

We follow Schaffer (1988), who adapted the well-known notion of an evolutionarily
stable strategy (ESS) due to Maynard Smith (1974) to finite populations of
interacting agents.
A strategy is evolutionarily stable, if a whole population using that strategy cannot
be invaded by a sufficiently small group of ”mutants” using another strategy.
Obviously, in the context of finite populations of n players the smallest meaningful
number of mutants is one. This motivates the following definition: let the strategy
s be adapted by all players i, i = 1, ..., n. A mutant strategy s′ 6= s can invade s,
if the payoff for a single player using s′ (against the (n-1) other players using s) is
strictly higher than the payoff of a player using s (against (n-2) other players using
s and the mutant using s′). A strategy s∗ is then called evolutionarily stable, if it
cannot be invaded by any other strategy.
Note that the comparison of payoffs implied by the above definition requires a
symmetric game; i.e. a game satisfying i) and ii) of Definition 1. More formally,
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Definition 3:

Let Γ be a symmetric game. A strategy s∗ is an ESS, if for all s ∈ S

(*) Π(s∗; s, s∗, ..., s∗) ≥ Π(s; s∗, ..., s∗)

s∗ is a strict ESS, if the inequality is a strict one.

If Γ is also aggregative, then (*) reads

Π̄(s∗; g(s, s∗, ..., s∗)) ≥ Π̄(s, g(s, s∗, ..., s∗)) for all s ∈ S

As observed by Schaffer (1988) this means, that an ESS is a strategy s∗ with the
property

s∗ ∈ arg max
s′∈S

[Π(s′; s∗, ..., s∗)− Π(s∗; s′, s∗, ..., s∗)]

Hence s∗ corresponds to the Nash equilibrium of the game, in which players
maximize relative (not absolute) payoff. This -in the usual way- can be found by
looking for a fixed point of the best response correspondence, which in the case of
symmetric games is just given by the above: it is the correspondence, that assigns
to each strategy s the set of maximizers of the relative pay-off function (identical
to all players), which results from all other players using s.

The Nash equilibrium of the game with relative payoff functions (i.e. ESS of
the game with absolute payoff functions) need not correspond to a Nash equilibrium
of the game with absolute payoffs; hence the well-known refinement property of
ESS for infinite player populations does not hold in the context of finite player
populations. E.g. Hehenkamp et al. (2004) show that for a certain class of
submodular aggregative games, namely Tullock contests, ESS and Nash equilibrium
always differ (and the former exists if and only if the latter exists). It always pays
for a player to increase effort in an ESS beyond the Nash effort level, because such a
(marginal) increase will lower an opponent’s pay-off by more than it lowers his own.
This form of spiteful behavior (Hamilton,1970) can even lead to overdissipation of
the contested rent in an ESS.
An important strengthening of the ESS requirement -also due to Schaffer (1988)-
demands additional stability against several identical mutants:
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Definition 4:

An ESS s∗ is called (strictly) M-stable, if a population of n players using
s∗ cannot be invaded by m mutants, who all use s 6= s∗, for 1 ≤ m ≤ M
and M ≤ n− 1, i.e.

Π(s∗, s,
m︷︸︸︷... , s, s∗, ..., s∗) ≥ (>) Π(s, s,

m−1︷︸︸︷... , s, s∗, ..., s∗)

for all s ∈ S and m ∈ {1, ...,M}

s∗ is called (strictly) globally stable, if it is (strictly) (n-1 )-stable.

Strictly globally stable ESS of finite population games have the important property
of being the unique stable limit points of stochastic dynamic adjustment processes,
which arise from imitation and experimentation behavior of players (see Schenk-
Hoppē (2000) and Alōs-Ferrer and Ania (2004)). I.e. such strategies are the long-
run outcome, if boundedly rational players behave in this way. Note, again, that
the requirement from Definition 4 for aggregative games demands, that

Π̄(s∗, g(s,
m︷︸︸︷... , s, s∗, ..., s∗)) ≥ (>) Π̄(s, g(s,

m︷︸︸︷... , s, s∗, ..., s∗))

for all s ∈ S and m ∈ {1, ...,M}

3 The Result

We now prove that for submodular aggregative games the notions of evolutionary
stability (ESS) and global evolutionary stability (global ESS) coincide; i.e. in
these games stability against invadibility by one mutant implies stability against
invadibility by any number of mutants! This somewhat counterintuitive property
follows from submodularity in these games: suppose a strategy s∗ is an ESS; i.e.
s∗ is stable against a single mutant. If we now, in addition, require stability of
s∗ against invasion by two mutants, we extend the non-invadibility condition to
a population, in which one incumbent strategy s∗ has been substituted for an
additional mutant strategy. A larger (smaller) mutant strategy, which replaces
a incumbent strategy, will unambiguously increase (decrease) the aggregate of
individual actions for all players. Submodularity then means that an incumbent
strategy player’s best response is to decrease (increase) his action. So the mutant
strategy is always caught ”wrong-footed” (i.e. as lying on the ”wrong side” of the
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incumbent strategy): it cannot do better than s∗ with two copies, if it hasn’t done
so before with just a single copy.
More precisely, we prove

Theorem:

Let Γ be a (strictly) submodular generalized aggregative game.
Then any ESS of Γ is (strictly) globally stable.

Proof:

Let s∗ ∈ S be an ESS of Γ; i.e. it holds that

(1) Π̄(s∗, g(s, s∗, ..., s∗)) ≥ Π̄(s, g(s, s∗, ..., s∗)) for all s ∈ S

(1) is our induction hypothesis (IH); we claim that (IH) implies global stability of
s∗:

(2) Π̄(s∗, g(s,
m︷︸︸︷... , s, s∗, ..., s∗)) ≥ Π̄(s, g(s,

m︷︸︸︷... , s, s∗, ..., s∗))

for all s ∈ S and all m = 1 . . . , n− 1

We will use aggregativeness and the decreasing differences-property of Π̄ to infer
that if (2) holds for m ∈ {1, ..., n− 2} than it must hold for (m+1) as well. I.e. we
have to show that

(C) Π̄(s∗, g(s,
m+1︷︸︸︷... , s, s∗, ..., s∗)) − Π̄(s, g(s,

m+1︷︸︸︷... , s, s∗, ..., s∗)) ≥ 0

for all s ∈ S.

i) Suppose that s∗ < s, then it follows that

g(s,
m︷︸︸︷... , s, s∗, ..., s∗) < g(s,

m+1︷︸︸︷... , s, s∗, ..., s∗)

because of monotonicity of g.
Since Π̄ has (strictly) decreasing differences this means, that

Π̄(s, g(s,
m+1︷︸︸︷... , s, s∗, ..., s∗))− Π̄(s, g(s,

m︷︸︸︷... , s, s∗, ..., s∗))

7



≤ (<) Π̄(s∗, g(s,
m+1︷︸︸︷... , s, s∗, ..., s∗))− Π̄(s∗, g(s,

m︷︸︸︷... , s, s∗, ..., s∗))

from this it follows that

0 ≤ (<) Π̄(s∗, g(s,
m+1︷︸︸︷... , s, s∗, ..., s∗))− Π̄(s∗, g(s,

m︷︸︸︷... , s, s∗, ..., s∗))

−Π̄(s, g(s,
m+1︷︸︸︷... , s, s∗, ..., s∗)) + Π̄(s, g(s,

m︷︸︸︷... , s, s∗, ..., s∗))

≤ (<) Π̄(s∗, g(s,
m+1︷︸︸︷... , s, s∗, ..., s∗))− Π̄(s, g(s,

m+1︷︸︸︷... , s, s∗, ..., s∗))

since Π̄(s∗, g(s,
m︷︸︸︷... , s, s∗, ..., s∗)) ≥ Π̄(s, g(s,

m︷︸︸︷... , s, s∗, ..., s∗))

because of our induction hypothesis (IH).
This proves (C) for (m+1)mutants s.

ii) Suppose now that s∗ > s, then it follows that

g(s,
m︷︸︸︷... , s, s∗, ..., s∗) > g(s,

m+1︷︸︸︷... , s, s∗, ..., s∗)

Since Π has (strictly) decreasing differences this means, that

Π̄(s∗, g(s,
m︷︸︸︷... , s, s∗, ..., s∗))− Π̄(s∗, g(s,

m+1︷︸︸︷... , s, s∗, ..., s∗))

≤ (<) Π̄(s, g(s,
m︷︸︸︷... , s, s∗, ..., s∗))− Π̄(s, g(s,

m+1︷︸︸︷... , s, s∗, ..., s∗))

Consequently,

0 ≤ (<) Π̄(s, g(s,
m︷︸︸︷... , s, s∗, ..., s∗))− Π̄(s, g(s,

m+1︷︸︸︷... , s, s∗, ..., s∗))

−Π̄(s∗, g(s,
m︷︸︸︷... , s, s∗, ..., s∗)) + Π̄(s∗, g(s,

m+1︷︸︸︷... , s, s∗, ..., s∗))

≤ Π̄(s∗, g(s,
m+1︷︸︸︷... , s, s∗, ..., s∗))− Π̄(s, g(s,

m+1︷︸︸︷... , s, s∗, ..., s∗))

since Π̄(s, g(s,
m︷︸︸︷... , s, s∗, ..., s∗)) − Π̄(s∗, g(s,

m︷︸︸︷... , s, s∗, ..., s∗)) ≤ 0 because of our in-
duction hypothesis (IH). This again yields (C).
This proves the theorem. Our proof by induction generalizes Theorem 4 in
Hehenkamp et al. (2004) from the context of Tullock contests to the entire class of
submodular aggregative games.
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Note, that our Theorem does not require an ESS to be a strict ESS to infer its
global stability properties. An obvious Corollary, which directly follows from our
method of proof, hence is

Corollary:

Let Γ be a submodular generalized aggregative game.
Then any strict ESS is strictly globally stable.

Our result is similar, yet different and of deeper nature, to that of Alōs-Ferrer and
Ania (2004). They show, that it is submodularity of an aggregative game that ac-
counts for the fact, that an aggregate-taking equilibrium must be a globally stable
ESS. They use this fact to show existence of (globally stable) ESS via existence of
an aggregate-taking equilibrium. Our result shows, that as far as global stability of
an ESS is concerned this detour (via the notion of an aggregate-taking equilibrium)
is neither necessary nor as general as our direct approach. E.g. for the example of
rent-seeking contests presented below our Theorem implies existence of a globally
stable ESS for parameter ranges, that imply non-existence of an aggregate-taking
equilibrium.
The Theorem also gives a unifying account of results relating to the stochastic stabil-
ity of finite population ESS. Vega-Redondo (1997) and -in more generality- Schenk-
Hoppē (2000) show, that in Cournot games only ESS are selected as invariant states
by certain explicitly dynamic and stochastic models of the evolutionary process.
Alōs-Ferrer and Ania (2004) use a result of Ellison (2000) on stochastic stability to
prove, that a strictly globally stable ESS (if it exists) is the unique stochastically sta-
ble state of such evolutionary process. We now add the insight, that Vega-Redondo
(1997) and Schenk-Hoppē (2000) derive their results from games, whose ESS’s are
in fact strictly globally stable. Invariant states in these models can hence be eas-
ily computed by applying relative payoff maximization. Appendix 1 gives a slight
generalization.

4 An example: evolutionary rent-seeking

Tullock (1980) modelled competition for a rent of value V as a contest between n
players. All players expend effort (or income) to obtain the rent, but only the winner
gets the entire rent while all expenditures are forfeited. If the contestants expend
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s = (s1, ..., sn), si ≥ 0, the probability of winning the rent for player i, i=1,...,n is
given by

pi(s1, ..., sn) =
sr

i∑n
j=1 sr

j

r > 0

and expected payoff for player i is given by

Πi(s1, ..., sn) = pi(s1, ..., sn) · V − si =
sr

i∑n
j=1 sr

j

· V − si

One can show that for r ≤ n
n−1

a unique ESS s∗ = r
n
· V exists (Hehenkamp et al.

(2004), Theorem 2).
Observe now that Tullock contests are aggregative games: define the aggregator g
as

g(s1, ..., sn) = (
n∑

j=1

sr
j)

1/r

to obtain

Πi(s1, ..., sn) = Π̄(si, g(s1, ..., sn)) = (
si

g(s1, ..., sn)
)r · V − si

with g(s1, ..., sn) strictly increasing in all its components.
Moreover, Tullock contests are strictly submodular (in individual strategy and the
aggregate g) since

∂2Π̄

∂si∂g
= − sr−1

i

g(s1, ..., sn)r+1
· r2 < 0 for all si > 0

According to our Theorem the unique ESS then in fact must be strictly globally
stable. Note, that an aggregate-taking equilibrium only exists for r < 1 (Alōs-Ferrer
and Ania, 2004). So, proving existence of a globally stable ESS via existence of
an aggregate taking equilibrium for e.g. n = 2 only works, if r < 1, but a globally
stable ESS exists for all r ≤ 2. The direct proof of Hehenkamp et al. (2004),
which does not refer to submodularity, combined with our Theorem then reveals
the interplay between adding more and more mutants and the submodular payoff
structure: Suppose m mutants have ”invaded” a population of n players, who all
used the ESS strategy s∗, with strategy s̄. This means that m ESS-players using s∗

have been replaced by m players using s̄ in the n-player contest (m < n).

The relative payoff function of one of the m mutants, Πm
M , is then given
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by

Πm
M = Π̄(s̄, g(s̄, ..., s̄, s∗, ..., s∗))− Π̄(s∗, g(s̄, ..., s̄, s∗, ..., s∗))

=
s̄r − s∗

r

g(s̄,..., s̄, s∗, ..., s∗)r
· V − (s̄− s∗) =

s̄r − s∗
r

[m · s̄r + (n−m)s∗r ]
· V − (s̄− s∗)

Substituting yet another s∗-player for a mutant s̄ then simply amounts to a change
of the aggregate variable g in the relative and absolute payoff functions of all
players, mutants and ESS-strategists alike: if s̄ > s∗ holds, g will increase to ḡ;
likewise, if s̄ < s∗, then g will decrease to ¯̄g.

Since Π̄ is strictly submodular and hence has strictly decreasing differences
(in individual strategy and aggregate) this means that

i) Π̄(s̄, ḡ)− Π̄(s∗, ḡ) < Π̄(s̄, g)− Π̄(s∗, g) if s̄ > s∗

and so the relative payoff of a mutant decreases, if the aggregate changes
from g to ḡ > g. Consequently, if this relative payoff has been negative before
(with just m mutants), it will be negative as well after the introduction of an
additional mutant;

ii) Π̄(s∗, g)− Π̄(s̄, g) < Π̄(s∗, ¯̄g)− Π̄(s̄, ¯̄g) if s̄ < s∗

and so the relative payoff of an ESS-strategist increases, if the aggre-
gate changes from g to ¯̄g < g. If it has been positive before (with just
m mutants), it will also be positive after the introduction of an additional
mutant. Equivalently, the mutants relative payoff decreases as before.

Hehenkamp et al. (2004) heuristically explained this result by treating m -the
number of mutants- as a continuous variable and pointing to the fact, that

∂Πm
M

∂m
= −

[
s̄r − s∗

r

g(s̄, ..., s̄, s∗, ..., s∗)r

]2

· V < 0 for all s̄ 6= s∗

We now see that the property of submodularity accounts for the minus sign in this
expression exclusively. Consequently, submodularity ensures that stability against
’small’ invasions is synonymous with stability against any invasion.
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Appendix 1:

We have read the property of decreasing differences of the pay-off function Π̄ as a
property of the relative pay-off function Π̄(s′, g)− Π̄(s, g) to see its natural relation
to the property of an ESS, which has to maximize this relative pay-off. As stated
this is a cardinal property of Π̄. A well-known ordinal version of it is the socalled
single-crossing property, SCP.

Definition 5:

A generalized aggregative game Γ is quasi-submodular, if Π̄ satisfies the
single-crossing property (SCP); i.e. for all s′ ≥ s and g′ ≥ g

Π̄(s′, g)− Π̄(s, g) ≤ 0 implies Π̄(s′, g′)− Π̄(s, g′) ≤ 0

If all inequalities are strict ones, the game is strictly quasi-submodular.

Remark: If a game is submodular; i.e. has decreasing differences, then it is also
quasi-submodular; i.e. satisfies SCP:
if for all s′ ≥ s and g′ ≥ g we have that

Π̄(s′, g′)− Π̄(s, g′) ≤ Π̄(s′, g)− Π̄(s, g)

then the latter difference being non-positive, of course, implies that the former
must be likewise. Clearly, decreasing differences of Π̄ imply SCP of Π̄.

Our Theorem also holds under the weaker assumption of SCP for Π̄:

Theorem(ordinal version):

Let Γ be a (strictly) quasi-submodular generalized aggregative game.
Then any ESS of Γ is (strictly) globally stable.

Proof: Let s∗ ∈ S be an ESS of Γ; i.e. it holds that

Π̄(s∗, g(s, s∗, ..., s∗)) ≥ Π̄(s, g(s, s∗, ..., s∗)) for all s ∈ S.

The introduction hypothesis (IH) is that the same holds for m mutants. That is,

Π̄(s∗, g(s,
m︷︸︸︷... , s, s∗, ..., s∗)) ≥ Π̄(s, g(s,

m︷︸︸︷... , s, s∗, ..., s∗)) for all s ∈ S.

We now want to show that the inequality will also hold for m+1 mutants by invoking
aggregativeness and (SCP).
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i) Suppose s∗ < s, then g(s,
m︷︸︸︷... , s, s∗, ..., s∗) < g(s,

m+1︷︸︸︷... , s, s∗, ..., s∗). By (IH)

Π̄(s, g(s,
m︷︸︸︷... , s, s∗, ..., s∗))− Π̄(s∗, g(s,

m︷︸︸︷... , s, s∗, ..., s∗)) ≤ 0.

Since Π̄ satisfies (SCP), we have that

Π̄(s, g(s,
m+1︷︸︸︷... , s, s∗, ..., s∗))− Π̄(s∗, g(s,

m+1︷︸︸︷... , s, s∗, ..., s∗)) ≤ 0.

ii) Suppose now that s∗ > s, then g(s,
m︷︸︸︷... , s, s∗, ..., s∗) > g(s,

m+1︷︸︸︷... , s, s∗, ..., s∗).
By contradiction suppose that

Π̄(s∗, g(s,
m+1︷︸︸︷... , s, s∗, ..., s∗))− Π̄(s, g(s,

m+1︷︸︸︷... , s, s∗, ..., s∗)) < 0.

Since Π̄ satisfies (SCP), we have that

Π̄(s∗, g(s,
m︷︸︸︷... , s, s∗, ..., s∗))− Π̄(s, g(s,

m︷︸︸︷... , s, s∗, ..., s∗)) < 0,

which contradicts (IH).

Analogously, it follows that if (SCP) holds strictly, then an ESS is strictly globally
stable. 2

Analogously, the Corollary generalizes:

Corollary(ordinal version):

Let Γ be a quasi-submodular generalized aggregative game.
Then any strict ESS is strictly globally stable.
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Appendix 2:

If one defines supermodularity of a generalized aggregative game Γ as Π̄ having
increasing differences; i.e. for all s′ ≥ s and g′ ≥ g

Π̄(s′, g′)− Π̄(s, g′) ≥ Π̄(s′, g)− Π(s, g),

and quasi-supermodularity as the property, for all s′ > s and g′ > g,

Π̄(s′, g)− Π̄(s, g) ≥ 0 implies Π̄(s′, g′)− Π̄(s, g′) ≥ 0

then the following implication can be derived. Again, quasi-supermodularity is
implied by supermodularity; i.e. increasing differences of Π̄.

Lemma:

Let Γ be a (quasi-)supermodular generalized aggregative game. Then it
holds, that if a strategy s ∈ S is not m-stable, then it is not (m+1)-
stable. Equivalently, if s ∈ S is (m+1)-stable, then it is m-stable.

The Lemma shows, that the ”intuitive” inclusion, namely that if (m+1) mutants
cannot invade a population, then neither can only m mutants, is, in fact, tied to the
property of supermodularity, which expresses complementarity of s and g.
Our Theorem identifies submodularity - and hence substitutability between s and
g - as the source of the ”unintuitive” reverse inclusion, namely that if m mutants
cannot invade, then neither can (m+1) mutants.

16
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