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Abstract 
 
The use of large datasets for macroeconomic forecasting has received a great deal of interest 
recently. Boosting is one possible method of using high-dimensional data for this purpose. It 
is a stage-wise additive modelling procedure, which, in a linear specification, becomes a 
variable selection device that iteratively adds the predictors with the largest contribution to 
the fit. Using data for the United States, the euro area and Germany, we assess the 
performance of boosting when forecasting a wide range of macroeconomic variables. 
Moreover, we analyse to what extent its forecasting accuracy depends on the method used for 
determining its key regularisation parameter, the number of iterations. We find that boosting 
mostly outperforms the autoregressive benchmark, and that K-fold cross-validation works 
much better as stopping criterion than the commonly used information criteria. 
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1 Introduction

There has been a recent upswing of interest using large datasets for macroe-

conomic forecasting. An increasing number of time series describing the state

of the economy are available that could be useful for forecasting. Also, com-

putational power to handle an immense amount of data has steadily increased

over time. Thus, researchers now attempt to improve their forecasting models

by exploiting a broader information base.

Conventional econometric methods are not well suited to incorporating a

large number of predictors: depending on the number of time-series observa-

tions, it is either impossible or inefficient to estimate the respective forecast-

ing model. To overcome these problems without losing relevant information,

new forecasting methods were developed. Eklund and Kapetanios (2008)

classify the methods for forecasting a time series into three broad, partly

overlapping, categories. The first group includes methods that use the whole

dataset for forecasting, such as Bayesian regression and factor methods. The

second group consists of forecast combination methods that use subsets of the

data to produce multiple forecasts, which are then averaged. Component-

wise boosting belongs to the third category. The latter assembles variable

selection methods (LASSO and least angle regression are other examples)

that also use subsets of the data, but produce only one forecast based on

the optimal set of variables. More specifically, component-wise boosting is a

stage-wise additive modelling procedure, that sequentially adds the predic-

tor with the largest contribution to the fit without adjusting the previously

entered coefficients.

Boosting has attracted much attention in machine learning and statistics

because it can handle large datasets in a computationally efficient manner

and because it has proven excellent prediction performance in a wide range of

applications (Bühlmann and Hothorn, 2010). However, only recently has the

method found its way into the macroeconometric literature. Apart from sev-

eral financial applications (Audrino and Barone-Adesi, 2005; Gavrishchaka,

2006; Audrino and Trojani, 2007; Andrada-Félix and Fernández-Rodŕıguez,

2008), there are only few macroeconometric studies on the forecasting per-
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formance of boosting (Shafik and Tutz, 2009; Bai and Ng, 2009; Hyun Hak

and Swanson, 2011; Buchen and Wohlrabe, 2011). Results with respect to

the predictive accuracy of boosting are promising. However, all these studies

are confined to U.S. data and use only few target variables.1

We add to this literature by analysing the performance of boosting when

forecasting a wide range of macroeconomic variables using three datasets for

the United States, the euro area, and Germany. Moreover, we investigate to

what extent the forecasting performance of boosting depends on the speci-

fication of the boosting algorithm concerning the stopping criterion for the

number of iterations.

Careful choice of the stopping criterion of boosting is crucial since the

number of iterations M is the key parameter regularising the tradeoff between

bias and variance, on which the forecasting performance hinges. Small values

of M yield a parsimonious model with a potentially large bias. The larger

M becomes, the more one approaches a perfect fit, increasing the variance of

the forecasting model. There are several methods for estimation the optimal

number of iterations. The information criteria proposed by Bühlmann (2006)

are wide-spread because they are computationally attractive,2 but they tend

to lead to overfitting (Hastie, 2007). Alternatively, resampling methods, such

as K-fold cross-validation, can be applied. We evaluate whether the various

stopping criteria result in relevant differences in the predictive performance

of boosting when forecasting macroeconomic aggregates.

The remainder of this paper is organised as follows. Section 2 explains

the boosting algorithm, especially how it handles the tradeoff between bias

and variance. Section 3 sums up our empirical analysis. Section 4 concludes.

1An exception is Carriero, Kapetanios, and Marcellino (2011) who compare different
methods that can be used in a VAR framework for forecasting the whole dataset consist-
ing of 52 macroeconomic variables, including several reduced-rank models, factor models,
Bayesian VAR models, and multivariate boosting. The latter is an extension of the stan-
dard boosting method developed by Lutz and Bühlmann (2006), where the predictors are
selected according to a multivariate measure of fit. The results indicate that the forecast-
ing performance of multivariate boosting is somewhat worse than that of the standard
boosting approach.

2They are used, for instance, by Bai and Ng (2009), Shafik and Tutz (2009), and
Hyun Hak and Swanson (2011).
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2 The Boosting Algorithm

Boosting was originally designed as a classification scheme (Freund and

Schapire, 1995, 1996) and later extended to regression problems (Friedman,

Hastie, and Tibshirani, 2000; Friedman, 2001).3 It is based on the machine

learning idea, meaning that it is a computer programme that “learns from

the data” (Hastie, Tibshirani, and Friedman, 2009). Instead of estimating a

“true” model, as is traditionally done in statistics and econometrics, it starts

with a simple model that is iteratively improved or “boosted” based on the

performance with training data. As Bühlmann and Yu (2003) put it, “for

large dataset problems with high-dimensional predictors, a good model for

the problem is hard to come by, but a sensible procedure is not.”

2.1 Forward Stage-wise Modelling

Boosting estimates a sequence of nested models, resulting in an additive

model:

f̂M(xt) =
M∑
m=1

b(xt; β̂m),

where m = 1, 2, ...,M denote the iteration steps and b(xt; β̂m) are simple

functions of the input vector xt, called learner in boosting terminology. The

fitting method used to determine b(xt; β̂m) is also part of the learner.

More specifically, boosting performs forward stage-wise modelling: it

starts with the intercept and in each iteration m adds to the model the

learner that most improves the fit, without modifying the parameters of

those previously entered. The learners are selected according to a loss func-

tion L(yt, f̂m(xt)), given the current model f̂m−1(xt). Since in each iteration,

only the parameters of the last learner need to be estimated, the algorithm

is computationally feasible even for high-dimensional data. Generally, a for-

ward stage-wise modelling procedure can be summarised as follows.

1. Initialise f̂0(xt) = ȳ.

3For an overview of boosting methods, see Bühlmann and Hothorn (2007a).
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2. For m = 1 to M :

(a) Compute

β̂m = argmin
β̂

T∑
t=1

L(yt, f̂m−1(xt) + b(xt; β̂)).

(b) Set

f̂m(xt) = f̂m−1(xt) + b(xt; β̂m).

2.2 Component-wise L2-Boosting

Generally, boosting can accommodate all sorts of nonlinearities, but for high-

dimensional datasets, it is advisable to engage in variable selection so as

to reduce the complexity of the learner (Bühlmann and Yu, 2003). This

can be achieved by estimating a (generalised) linear model. With so-called

component-wise boosting, instead of a function of predictors, one variable

is chosen and fitted in each step. In regression problems with the random

variable Y ∈ R, squared error loss (L2-loss) is a common choice for the loss

function,4

L(yt, f̂m(xt)) = 1/2(yt − f̂m(xt))
2.

With L2-loss, the boosting algorithm repeatedly fits the learner to the

current residuals ut:

L(yt, f̂m(xt)) = L(yt, f̂m−1(xt) + b(xt; β̂))

= 1/2(yt − f̂m−1(xt)− b(xt; β̂))2

= 1/2(ut − b(xt; β̂))2.

Note that in a time-series context the predictor vector xt contains p lags of

the target variable yt as well as p lags of the exogenous variables zj,t, where

4The loss function is scaled by the factor 1/2 in order to ensure a convenient represen-
tation of the first derivative.
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j = 1, ..., N :

xt = (yt−1, yt−2, ..., yt−p, z1,t−1, z1,t−2, ..., z1,t−p, ..., zN,t−1, zN,t−2, ..., zN,t−p).

Thus, component-wise boosting simultaneously selects variables and lags.

From all potential predictor variables xk,t, where k = 1, ..., p(1+N), it selects

in every iteration m one variable xk∗m,t—but not necessarily a different one

for each iteration—which yields the smallest sum of squared residuals (SSR).

The algorithm for component-wise boosting with L2-loss can be sum-

marised as follows.

1. Initialise f̂0(xt) = ȳ.

2. For m = 1 to M :

(a) Compute the residual ut = yt − f̂m−1(xt).

(b) For k = 1, ..., p(1 + N), regress the residuals ut on xk,t to obtain

β̂k and compute SSRk =
∑T

t=1(ut − xk,tβ̂k)2.

(c) Choose xk∗m,t such that SSRk∗m = min SSRk.

(d) Update f̂m(xt) = f̂m−1(xt) + νb(xk∗m,t; β̂k∗m), where 0 < ν < 1.

The parameter ν was introduced by Friedman (2001) who showed that the

prediction performance of boosting is improved when the learner is shrunk

toward zero. The final function estimate is then the sum of the M learners

multiplied by the shrinkage parameter ν:

f̂M(xt) = ȳ +
M∑
m=1

νb(xk∗m,t; β̂k∗m).

2.3 Controlling the Bias-Variance Tradeoff

Both the number of iterations M and the shrinkage parameter ν regulate the

tradeoff between bias and variance that arises when fitting a model and that

influences its forecasting performance. Suppose the data arise from the true

but unknown model Y = f(X + ε), where Y is a random target variable
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and X is the vector of random predictors. Under the assumption that the

error has E(ε) = 0 and Var(ε) = σ2
ε we can derive the expected forecast error

Err(xt) at an arbitrary predictor vector xt of a forecasting model f̂(xt), using

squared error loss:

Err(xt) = E[(Y − f̂(xt))
2|X = xt]

= σ2
ε + [E[f̂(xt)]− f(xt)]

2 + E[f̂(xt)− E[f̂(xt)]]
2

= σ2
ε + Bias 2(f̂(xt)) + Var(f̂(xt)).

The first term of this decomposition of the expected forecast error is the

noise, that is, the variance of the target series around its true mean f(xt) =

E(Y |X = xt). It is irreducible, even if we knew the true model. The second

term is the squared bias, the amount by which the average model estimate

differs from the true mean. In contrast to a simple OLS regression, where you

assume that the true model is known, thus E[f̂(xt)] = f(xt), this term is not

zero but depends on the model complexity. Typically, it will be larger if the

model is not complex enough so that we omit important variables. The third

term is the variance of the forecasting model, the expected squared deviation

of f̂(xt) around its mean. This term increases with model complexity. If we

fit the training data harder, the model will generalise less well to unseen

data and the forecasting performance deteriorates. Thus, the model must be

chosen such that bias and variance are balanced to minimise the expected

forecast error (Hastie, Tibshirani, and Friedman, 2009).

One way of avoiding overfitting with boosting is to employ a weak learner,

that is, one that involves few parameters and has low variance relative to bias

(Bühlmann and Yu, 2003). This can be achieved, for instance, by shrinking

the learner toward zero because doing so reduces its variance. The other way

of controlling the bias-variance tradeoff is to restrict the number of boosting

iterations. The shrinkage parameter ν and the number of iterations M are

connected; the smaller ν, the more iterations are needed to achieve a given

prediction error (Hastie, Tibshirani, and Friedman, 2009). Empirical work

finds that the exact size of the shrinkage parameter is of minor importance, as
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long as it is “sufficiently small”, i.e., 0 < ν ≤ 0.1 (Friedman, 2001; Bühlmann

and Hothorn, 2007a; Hastie, Tibshirani, and Friedman, 2009). Thus, the

optimal number of iterations M∗ is the main regularisation parameter of

boosting.

There are several ways of estimating M∗, the most prominent being re-

sampling methods and information criteria. Resampling methods estimate

the expected forecast error directly by running the boosting algorithm mul-

tiple times with datasets drawn randomly from the original dataset.5 K-fold

cross-validation, for instance, randomly allocates the data into K roughly

equal-sized parts. For the kth part, the model is fit to the other K − 1 parts

and the forecast error with respect to the kth part is calculated. After repeat-

ing this for all K parts, the average forecast error yields the cross-validation

estimate for the expected forecast error. With information criteria, on the

other hand, the estimated forecast error is composed of two parts, one term

capturing model fit and one term penalising model complexity, measured by

the degrees of freedom.

For a linear model estimated by OLS, the degrees of freedom are simply

the number of fitted parameters (Hastie, Tibshirani, and Friedman, 2009).

For boosting, the degrees of freedom must be determined as a function of the

number of iterations. With growing m, the complexity of the fitted proce-

dure does not increase by constant amounts, but by exponentially decreasing

amounts. This is largely due to the nature of forward stage-wise fitting; the

learner that is added to the model each iteration depends on the performance

of the current model (Bühlmann and Yu, 2003). In fact, there is no exact

expression for the degrees of freedom of boosting (Bühlmann and Hothorn,

2007b). But Bühlmann (2006) develops an approximation for L2-boosting,

which defines the degrees of freedom of boosting in iteration m as the trace

of the boosting hat matrix Bm:

df(m) = trace(Bm), (1)

5To be valid for time-series data, the mboost package implemented in R uses a model-
based approach, assuming i.i.d. residuals. The idea is to fit the model first, and to
subsequently resample from the residuals. For details about how to construct the new
samples from the residuals, see Efron and Tibshirani (1986).
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where Bm is a projection matrix that yields the fitted function f̂m(xt) when

post-multiplied by the realisations yt:

f̂m(xt) = Bmyt.

Bühlmann (2006) proposes to insert (1) into the corrected Akaike crite-

rion:

cAIC(m) = log(σ̂2) +
1 + df(m)/T

(1− df(m) + 2)/T
, where

σ̂2 = T−1

T∑
t=1

(yt − f̂m(xt))
2.

An alternative method is to use the gMDL criterion (Minimum Descrip-

tion Length criterion using a g-prior), which bridges the AIC and the BIC

in a data-driven manner and adaptively selects the better among the two

(Bühlmann and Hothorn, 2007a):6

gMDL(m) = log(S) +
df(m)

T
log(F ), where

S =
T σ̂2

T − df(m)
, F =

∑T
t=1 y

2
t − T σ̂2

df(m)S
.

Finally, the estimate for the optimal number of boosting iterations is given

by:

M̂∗ = argmin
1≤m≤Mmax

IC(m),

where Mmax is a large upper bound for the candidate number of boosting

iterations and IC is one of the information criteria.

These information criteria are computationally attractive, but they tend

to lead to overfitting. Hastie (2007) shows that the trace of the boosting

hat matrix is only a poor approximation since it treats the model at stage

m as if it was computed by a predetermined sequence of linear updates.7

6For details, see Hansen and Yu (2001).
7In that case, Equation (1) would be an exact measure of the degrees of freedom (Hastie,

Tibshirani, and Friedman, 2009).
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But the sequence of updates is adaptively chosen, and the cost of searching

for the variable with the best fit is ignored. Hence, the penalty term of the

information criteria tends to be too small, resulting in the procedure being

stopped too late. As an alternative, Hastie (2007) suggests approximating

the degrees of freedom of boosting by the size of the active set, that is,

the number of selected variables until iteration m, or using K-fold cross-

validation to estimate the expected forecast error. In the following empirical

application, we evaluate whether the various methods of determining the

stopping criterion result in relevant differences in the predictive accuracy of

boosting when forecasting macroeconomic aggregates.

3 Empirical Analysis

3.1 Data

For our empirical analysis, we use three large-scale datasets with monthly

frequency—one each for the United States, the euro area, and Germany. All

three datasets reflect various aspects of the respective economy and contain

information typically taken into consideration by central banks. The vari-

ables can be grouped into the following categories: real economy (such as

industrial production, orders, labour market, and housing market), money

and prices (such as monetary aggregates, wages, consumer prices, producer

prices, and commodity prices), financial markets (such as exchange rates,

interest rates, term spreads, and stock indices), and surveys. The datasets

vary in size (both with respect to T and N), but all three cover the recent

economic crisis.

For the United States, we use an updated version of the dataset em-

ployed by Giannone, Reichlin, and Sala (2004) containing 168 time series

from 01/1970 to 12/2010.8 For Germany, we use the dataset by Drech-

8For a full list of the series, see Giannone, Reichlin, and Sala (2004). Three series
were not available (series 104, 126 and 132) and two series are quarterly (series 172 and
173), so they are excluded. We used the monthly analogues of the authors’ stationarity
transformations, i.e., transformation 2 is the monthly difference, transformation 3 is the
monthly annualised growth rate and transformation 4 is the yearly growth rate in the
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sel and Scheufele (2012), which contains 217 time series from 01/1992 to

05/2011. In addition to the categories mentioned above, the German dataset

also contains information on governmental indicators (such as tax revenue

and customs duties) as well as a range of international indicators (such as

survey indicators or share indices of export partners).9 The smallest dataset

is the one for the euro area. It contains 78 time series from 02/1994 to

10/2010, which are listed with the respective stationarity transformation in

the Appendix.

3.2 Forecasting Approach

The component-wise boosting procedure applied in this study uses ordinary

least squares as learner and a squared error loss function to estimate an

autoregressive distributed lag (ADL) model:10

yt+h = α + β′xt + εt = α +
12∑
i=1

γiyt−i +
N∑
j=1

12∑
i=1

δjizj,t−i + εt.

The variables and lags not selected have a zero coefficient. To save compu-

tational time, the size of the shrinkage parameter ν is set to 0.1, the upper

bound of the interval suggested by the literature (Bühlmann and Hothorn,

2007a; Hastie, Tibshirani, and Friedman, 2009). The optimal number of it-

erations M∗ is estimated with several stopping criteria: the corrected AIC

and the gMDL criterion as information criteria—both with the trace of the

boosting hat matrix and the size of the active set as measures for the degrees

of freedom—and 10-fold cross-validation as a resampling method. All results

respective month.
9For a list of the series and the stationarity transformations, see Drechsel and

Scheufele (2012). To ensure that all series have the same length, we discarded
the following variables. Real economic indicators: WTEXMOG, WHTCFWH,
WHTCHEH, WHTCNMH, WHTSLGH, USLA01B, RVN, RETTOTG, EMPTOTO, EM-
POWHH. Finance: SPR-NF2AE, SPR-NF3BE, SPR-P3BE, SPR-EUCU, VDAXNEW,
VDAXIDX, MLNF2AE, MLNF3BE, MLNP3BE, MLHEUCU, TSD304B. Survey indica-
tors: IFOMTLQ, IFOMTKQ, IFOMTAQ, IFOMCAQ, IFOMCLQ, IFOMCKQ, IFOB-
DOQ, IFOBDQQ, IFOBDPQ, IFOWHIQ, IFOWHAQ, IFORTIQ, IFORTHQ, CON-
SNT, EUSVCIQ, PMIBD, PMIBDS, PMIEUR. International indicators: POEUSESIG,
CZEUSESIG, CHOL0955R.

10For estimation, we employed the mboost package implemented in R.

10



are compared for the case when the maximal number of iterations is set to

Mmax = 50 and 100.

We produce forecasts for the horizons h = 1, 3, 6, and 12 months. All

forecasts are computed directly and pseudo-out-of-sample using a rolling es-

timation window. The forecast period starts in 01/1990 for the United States,

and in 01/2000 for the euro area and Germany. Since our aim is to arrive at a

broad picture of the predictive performance of boosting in a macroeconomic

context, we forecast all the variables in the datasets. The specific form of

the target variable depends on its stationarity transformation and can be

either the (log) level in the respective month, the monthly first difference,

the monthly first (second) log difference, or the yearly log difference. Due to

computational considerations, all variables were centered for the respective

estimation window. We assess the forecasting accuracy of boosting relative

to the standard autoregressive model, where the lag length is determined by

the Bayesian information criterion (BIC).

To summarise the overall forecasting accuracy, we employ a multivari-

ate version of the mean squared forecast error (MSFE) as proposed by

Christoffersen and Diebold (1998). The multivariate MSFE is given by

MSFE = E(e′t+hWet+h), where et+h is the vector of the h-step-ahead fore-

cast errors and W is an N ×N weighting matrix with N being the number

of target variables. In accordance with Carriero, Kapetanios, and Marcellino

(2011), we choose a diagonal matrix W with the elements of the diagonal

being the inverse of the variances of the target series. Consequently, a series

that has large variance—and is thus less predictable—is given less weight.

3.3 Results

To give a first impression of the forecasting performance of boosting, we plot

the distribution of the mean squared forecast errors across all target variables.

It is shown for all three datasets and for different forecast horizons in Figure

1, where we use Mmax = 50 and K-fold cross-validation as stopping criterion.

The largest spikes tend to be close to one. But in most cases, more than 50%

of the MSFE ratios are below one, that is, boosting performs better than the
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AR benchmark. For the United States and Germany, most of the ratios are

concentrated between roughly 0.8 and 1.2, while for the euro area the spread

is somewhat wider.11

Figure 1: Histograms of MSFE-Ratios
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Notes: This figure displays the frequency distribution of the MSFE ratios of boosting using Mmax = 50
and K-fold cross-validation as stopping criterion, relative to the AR benchmark model for all target
variables. Outliers larger than 2 are excluded.

The multivariate MSFE ratios in Table 1 summarise the forecasting accu-

racy of boosting across all variables in the datasets while taking into account

the predictability of the target series. These aggregate results give us insights

in how boosting generally performs when forecasting any kind of macroeco-

nomic time series. First of all, it is confirmed that boosting beats the AR

benchmark on average. Many of the multivariate ratios are close to one,

but boosting can lead to improvements relative to the benchmark of up to

47%. Second, its relative forecast accuracy tends to improve with increasing

11Due to graphical reasons, outliers larger than 2 are excluded.
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forecasting horizon, although for the U.S. data, boosting also performs very

well at a forecast horizon of one month. Third, the number of boosting it-

erations leading to the smallest MSFEs seems to be quite small, at most 50.

The different stopping criteria are not completely robust to the choice of the

maximum number of iterations. Instead, the estimated optimal number of it-

erations tends to rise with larger Mmax. However, the differences vary across

criteria and are largest when the degrees of freedom to be employed in the

computation of the information criteria is approximated by the trace of the

boosting hat matrix (cAIC Trace or gMDL Trace). Estimating the degrees of

freedom by the size of the active set (cAIC Actset or gMDL Actset) delivers

better and more robust results. But finally, using 10-fold cross-validation

(CV) appears to be the dominant stopping criterion. Not only does it yield

the smallest multivariate MSFE ratio for a given forecast horizon (entries

in bold) in most of the cases, but it is also very robust to the choice of the

candidate number of iterations.

Figure 2 gives more insights into the functioning of the different stopping

criteria. It compares the multivariate MSFE ratios as well as the average

across variables and time of the estimated optimal number of iterations M∗

and of the number of variables that enter the models. Basically, we use the

same forecasting approach as described in Section 3.2, but we compare the

results for a wider range of choices regarding the maximum number of it-

erations (Mmax = 10, 20, ..., 500). Due to computational reasons, we only

compute the forecasts for the last 120 months, which leads to a smaller eval-

uation sample especially for the U.S. dataset. Here, we display exemplarly

the results for a forecast horizon of one month.
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The figure confirms what was already indicated by Table 1; on aver-

age, the MSFE ratios are smallest when the number of iterations is highly

restricted. With rising Mmax, the forecasting performance of boosting dete-

riorates. But this deterioration is most pronounced for the trace criteria, and

much less important for K-fold cross-validation and for the gMDL criterion

when using the size of the active set to estimate model complexity. Over-

all, K-fold cross-validation yields the best results. While the cAIC actset

stopping criterion often leads to smaller forecast errors at lower numbers of

iterations allowed for, they rise strongly at larger values of Mmax (see panels

in first column).

The reason for this differing forecasting accuracy can be seen from the

panels in the second column of Figure 2. They display the optimal number

of iterations M∗ as estimated by the various stopping criteria as a function

of Mmax. When using the trace information criteria, the chosen number of

iterations tends to go to the limit allowed for.12 Thus, these criteria indeed

seem to overfit and lead to very large models with many variables (see panels

in third column).13 On the contrary, the gMDL trace criterion and K-fold

cross-validation are much less sensitive with respect to the choice of Mmax.

4 Conclusion

Component-wise boosting is a variable selection method that can be used

in a data-rich environment. It starts with a simple model that is iteratively

updated by adding the predictor with the largest contribution to the fit. We

assess whether the predictive qualities of boosting that have been reported

in many other areas can be confirmed when forecasting a wide range of

macroeconomic variables. To that aim, we use large-scale datasets for the

United States, the euro area, and Germany. Moreover, we analyse to what

extent the forecasting accuracy of the boosting algorithm depends on the

12In that case, Mmax should actually be set higher.
13Keep in mind that the contribution of each variable is shrunk and that each variable

can be chosen several times. So while some of the variables are fitted completely (that is,
with a shrinkage factor of ν = 0.1, they are selected 10 times), some are only chosen once
or twice.

15



Figure 2: Comparison across Stopping Criteria
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Notes: This figure compares across various stopping criteria the multivariate MSFE ratios as well as the
average (across variables and time) estimated optimal number of iterations M∗ and the average number
of variables that enter the models for different choices of the maximum number of iterations Mmax,
where Mmax = 10, 20, ..., 500. The stopping criteria are the following: the corrected Akaike information
criterion (cAIC) and the Minimum Description Length criterion using a g-prior (gMDL), both when the
trace of the boosting hat matrix (Trace) and the size of the active set (Actset) is used to approximate
the degrees of freedom of the respective model, as well as K-fold cross-validation (CV). The forecasts are
computed for the last 120 months of the respective dataset and we only display the results for a forecast
horizon of one month.
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method chosen to determine its key regularisation parameter, the number of

iterations.

Indeed, we find that boosting performs well in macroeconomic forecast-

ing; it outperforms the benchmark in most cases. Furthermore, the choice

of the stopping criterion determining the number of iterations has an im-

portant influence on the forecasting performance of boosting. We compare

information criteria based on the trace of the boosting hat matrix as a mea-

sure of model complexity, which were proposed by Bühlmann (2006) and are

widely used, with information criteria based on the size of the active set as

well as with K-fold cross-validation as an example of a resampling method.

Our results confirm the critique by Hastie (2007) and suggest that the trace

criteria indeed underestimate model complexity. Thus, the boosting proce-

dure is stopped too late and overfits, which is reflected in larger forecasting

errors. Using the number of selected variables as a measure of model com-

plexity, as proposed by Hastie (2007) abates the problem. But overall, K-fold

cross-validation is the dominant stopping criterion.

To conclude, component-wise boosting is a powerful method that can

be used to forecast a wide range of macroeconomic variables. However, to

achieve the best possible results, it is important to choose the model selection

criterion carefully and not to adopt it by mere convention.
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Appendix

Table 2: List of Variables, Euro Area

Series Transformation
REAL ECONOMY
Eurostat, manufacturing, production, total 3
Eurostat. manuf., prod., textiles 5
Eurostat, manuf., prod., food, beverages and tobacco prod-
ucts

3

Eurostat, manuf., prod., motor vehicles, trailers, semi-trailers
and other transport

3

Eurostat, manuf., prod., machinery and equipment 3
Eurostat, manuf., prod., basic pharmaceutical products and
pharmaceutical preparations

3

Eurostat, manuf., prod., coke and refined petroleum products 3
Eurostat, manuf., prod., chemicals and chemical products 3
Eurostat, manuf., prod., basic metals 3
Eurostat, manuf., prod., rubber and plastic products 3
Eurostat, manuf., prod., intermediate goods 3
Eurostat, manuf., prod., consumer goods 3
Eurostat, unemployment 3
Eurostat, unemployment rate 2
Eurostat, manufacturing, order books 2
OECD, manufacturing, export order books or demand 2
OECD, retail trade volume 3
MONEY AND PRICES
ECB, M1 4
ECB, M2 4
ECB, M3 4
HWWI, total index, average 4
HWWI, agricultural raw materials index, average 4
HWWI, crude oil index, average 4
HWWI, industrial raw materials index, average 4
HWWI, energy raw materials index, average 4
ECB, consumer prices, index 4
ECB, consumer prices excluding energy and unprocessed food 6
Eurostat, domestic producer prices, manufacturing 4
Eurostat, dom. prod. prices, energy 4
Eurostat, dom. prod. prices, food products and beverages 4
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Table 2: List of Variables, Euro Area

Series Transformation
Eurostat, dom. prod. prices, tobacco products 4
Eurostat, dom. prod. prices, chemicals and chemical products 4
Eurostat, dom. prod. prices, motor vehicles, trailers and
semi-trailers

4

Eurostat, dom. prod. prices, intermediate goods 4
Eurostat, dom. prod. prices, capital goods 4
Eurostat, dom. prod. prices, durable consumer goods 4
Eurostat, dom. prod. prices, non-durable consumer goods 4
FINANCIAL MARKETS
OECD, real effective exchange rate, EUR 3
OECD, EUR/US$ exchange rate, monthly average 3
Eurostat, interbank rates, 3 month, yield, average 2
ECB, government benchmarks, bid, 2 year, yield, average 2
ECB, government benchmarks, bid, 3 year, yield, average 2
ECB, government benchmarks, bid, 5 year, yield, average 2
ECB, government benchmarks, bid, 7 year, yield, average 2
ECB, government benchmarks, bid, 10 year, yield, average 2
ECB, term spread, government benchmarks, 5-3 years 1
ECB, term spread, government benchmarks, 7-3 years 1
ECB, term spread, government benchmarks, 10-3 years 1
STOXX Limited, STOXX, broad index, end of month 3
STOXX Limited, STOXX 50, end of month 3
SURVEYS
CEPR, EuroCOIN, industry sector 1
DG ECFIN, economic sentiment indicator 1
DG ECFIN, manufacturing, industrial confidence indicator 1
DG ECFIN, construction confidence indicator 1
DG ECFIN, retail trade confidence indicator 1
DG ECFIN, manufacturing, export order books 1
DG ECFIN, manufacturing, order books 1
DG ECFIN, construction, order books 1
DG ECFIN, retail trade, employment expectations 1
DG ECFIN, construction, employment expectations 1
DG ECFIN, manufacturing, employment expectations 1
DG ECFIN, services, expectation of demand over next 3
months

1

DG ECFIN, manufacturing, production expectations 1
DG ECFIN, manufacturing, selling-price expectations 1
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Table 2: List of Variables, Euro Area

Series Transformation
DG ECFIN, consumer surveys, consumer confidence indicator 1
DG ECFIN, cons. surv., general economic situation over next
12 months

1

DG ECFIN, cons. surv., unemployment expectations over
next 12 months

1

DG ECFIN, cons. surv., price trends over next 12 months 1
DG ECFIN, cons. surv., financial situation of households over
next 12 months

1

DG ECFIN, cons. surv., major purchases at present 1
DG ECFIN, cons. surv., major purchases over next 12 months 1
DG ECFIN, cons. surv., savings at present 2
DG ECFIN, cons. surv., savings over next 12 months 1
OECD, total leading indicator, quantum, normalised 1
OECD, total leading indicator, trend restored 2
OECD, total leading indicator, amplitude adjusted 1
Transformation - 1: xt, 2: xt−xt−1, 3: ln(xt/xt−1), 4: ln(xt/xt−1)− ln(xt−1/xt−2).
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