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Abstract 
 
Encouraging innovation is an important part of environmental policy. A large literature in 
environmental economics examines the links between environmental policy and innovation. 
This paper reviews recent literature on green innovation. I highlight major trends in the 
literature, including an increased number of cross-country studies and a focus on the effect of 
different policy instruments on innovation. I include a discussion of the justifications and 
evidence for technology-specific policy incentives and present evidence on the effectiveness of 
government R&D spending. My review concludes with a discussion of three promising areas for 
new research on environmental innovation. 

JEL-Codes: O310, O380, Q550. 

Keywords: green innovation, induced innovation, pollution, climate change, renewable energy, 
energy efficiency, research and development, technology policy. 
 
 
 
 

 
  
  

David Popp 
Department of Public Administration and International Affairs 

Center for Policy Research 
The Maxwell School, Syracuse University 

426 Eggers Hall 
USA – Syracuse, NY 13244-1020 

dcpopp@maxwell.syr.edu 
https://dcpopp.expressions.syr.edu/ 

 
 
 
 
February 28, 2019 



1. Introduction 
Innovation is an important part of environmental policy.  Regulatory pressures spur firms 

to develop new and better ways to improve environmental performance.  As a result, forecasted 
costs of new environmental regulations often exceed actual costs (Harrington et al. 2000, 
Morgenstern 2015).  Moreover, promoting technological change is often a specific goal of 
environmental policy, such as through support mechanisms like feed-in tariffs for solar energy or 
by devoting a portion of funds from carbon taxes to energy research and development (R&D) 
programs.  For example, meeting climate policy goals currently under consideration, such as 
European Union discussions to reduce emissions by 40 percent below 1990 levels by 2030 or 
California’s target of relying solely on zero-emission energy sources by 2045, requires replacing 
vast amounts of fossil fuel energy sources with alternative, carbon-free energy sources.  While 
innovation over the past decades has helped reduce the cost of wind and solar energy, many 
technical challenges remains, including low-cost battery storage, both for intermittent energy 
sources and to bring down the cost of electric vehicles.   

There is a large literature in environmental economics examining the links between 
environmental policy and innovation.  Popp et al. (2010) provides an extensive review of the 
literature on environmental innovation.  But much has changed since that paper first appeared.  
Researchers have extended the study of environmental innovation by looking at the effects of 
different policies, by looking at a wide variety of new technologies, and by incorporating more 
micro-based data in their analyses.  This review highlights the major advances in the literature on 
environmental innovation in the decade since Popp et al. (2010) first appeared in print.1  While I 
include some references to key papers in the field, my focus is on papers published since that 
earlier review.  Moreover, given the large number of studies, my focus is narrower than in Popp et 
al. (2010). That paper reviewed both theoretical and empirical literature, and included papers 
studying either innovation or diffusion.  Here, my main focus is on empirical papers focused 
specifically on different aspects of environmentally friendly innovation.  During the past decade, 
there has also been a growing literature on environmental technology diffusion and the 
effectiveness of policies for encouraging their use, particularly pertaining to renewable energy and 
energy efficiency.  Allan et al. (2013) provides a review of this literature.  

Studies on the effect of policy or prices on environmental innovation draw their motivation 
from the notion of induced innovation (Hicks 1932, Binswanger and Ruttan 1978), which 
recognizes that R&D is a profit-motivated investment activity and that the direction of innovation 
likely responds positively in the direction of increased relative prices.  Responding to criticisms 
that this early literature lacked micro-economic foundations, Acemoglu (2002) developed a model 
of directed technical change, which incorporates, among other things, the importance of market 
size along with prices as factors biasing the equilibrium direction of technical change.  Acemoglu’s 
work spurred both new modeling efforts (e.g. Acemoglu et al. 2012, Lemoine, 2017, Hart 
forthcoming) and empirical analyses (e.g. Aghion et al. 2016) of directed technical change in an 
environmental setting. 

Important to the micro-economic foundations of environmental innovation is the role of 
market failures.  Market forces provide insufficient incentives for investment in either the 
development or diffusion of environmentally-friendly technologies.  Two types of market failures 
                                                 
1 The NBER Working Paper version of Popp et al. (2010) was published in April 2009 (NBER Working Paper 
#14832), almost exactly a decade prior to the first publication of this review. 
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provide the motivation for policy intervention.  One market failure is the traditional problem of 
environmental externalities.  Because pollution is not priced by the market, firms and consumers 
have no incentive to reduce emissions without policy intervention.  Thus, without appropriate 
policy interventions, the market for technologies that reduce emissions will be limited, reducing 
incentives to develop such technologies.  Policies addressing environmental externalities increase 
the potential market size for environmental innovation, and are often referred to as demand-pull 
policies in the literature. 

The second set of market failures pertaining to environmental R&D are knowledge market 
failures.  Primary among these is the public goods nature of knowledge (see, for example, Geroski 
1995).  In most cases, new technologies must be made available to the public for the inventor to 
reap the rewards of invention.  By making new inventions public, some (if not all) of the 
knowledge embodied in the invention becomes public knowledge.  This public knowledge may 
lead to additional innovations, or even to copies of the current innovations.  These knowledge 
spillovers provide benefit to the public as a whole, but not to the innovator.  As a result, private 
firms do not have incentives to provide the socially optimal level of research activity.  More 
recently, the literature on environmental innovation has focused on additional knowledge market 
failures, such as path dependency (e.g. Aghion et al. 2016) and capital market imperfections (e.g. 
Howell, 2017).  Policies addressing knowledge market failures are often referred to as technology-
push policies. 

I begin this review of empirical work on policy-induced environmental innovation 
discussing the issues relevant to measuring innovation and environmental policy.  Section 3 
presents general advances in the literature on environmental innovation over the past decade.  In 
sections 4 and 5 I focus on two key advances over the past decade: cross–country studies of policy 
induced innovation and studies focusing on the effect of different policy instruments.  I then dive 
deeper into research on policy instruments, discussing the justifications and evidence for 
technology-specific policy incentives (section 6) and presenting evidence on the effectiveness of 
government R&D spending (section 7).  Section 8 presents three promising areas for new research 
on environmental innovation.  Section 9 concludes. 

 

2. Measurement issues 
Scholars studying environmentally friendly (or “green”) induced innovation face two 

measurement challenges.  First, the knowledge that makes any technology a valuable improvement 
is an abstract concept.  We do not observe knowledge directly.  Rather, we observe inputs that 
create knowledge or outputs that contain knowledge.  Second, because environmental policy is a 
main driver of green innovation, capturing the array of policy instruments used to create demand 
for green innovation remains a challenge. While economists often focus on “getting prices right” 
through policies such as emissions taxes, in practice policymakers use a range of environmental 
policies, including technology mandates, subsidies, preferential tax treatment, and cap-and-trade 
policies.  Not only does the choice of policy instrument differ across jurisdiction, but so does the 
stringency of the policies chosen.  Representing the multiple dimensions of policy options remains 
a challenge. 
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2.1. Measuring innovation 
Research and development (R&D) data offer a straightforward measure of innovative 

activity.  R&D is an input into the innovation process.  Variations in environmentally friendly 
R&D spending tell us the relative importance placed on such innovation.  However, as R&D is an 
input, measures of R&D effort do not reveal information about outcomes of the innovation process.  
Moreover, detailed information on specific types of R&D is often unavailable.  For instance, in a 
survey of energy R&D activity, Gallagher et al. (2011) note that while government spending on 
energy R&D is widely available for International Energy Agency (IEA) member nations, data on 
energy R&D efforts from private firms are scarce.  Increased availability of firm level data has 
improved access to private sector R&D information, particularly in Europe where innovation 
surveys (described below) include questions on green R&D efforts.  

Patents offer an alternative measure of inventive activity.  Patents themselves are indicators 
of the output of innovative activity. However, patents, sorted by their date of application, also 
provide a good indicator of R&D activity, as patent applications are usually filed early in the 
research process (Griliches 1990).  As a result, patent counts not only serve as a measure of 
innovative output, but are indicative of the level of innovative activity itself. 

Patents provide a detailed record of each invention.  From the bibliographic data on a 
patent, the researcher can learn the identity and home country of the inventor, read a description 
of the invention, and see references to earlier patents.  Using patent data, it is possible for 
researchers to collect data in highly disaggregated forms.  Patent classifications can be used to 
distinguish between different types of R&D at great detail, such as air pollution control devices 
designed to reduce NOX emissions versus devices designed to control SO2 emissions.  Of particular 
use to researchers are recent efforts of the European Patent Office to classify sustainable 
technology patents using the “Y scheme”, which provides separate classifications for technologies 
pertaining to climate change mitigation and adaptation, as well as for smart grids. These 
classifications complement standard patent classification schemes such as the Cooperative Patent 
Classification (CPC) scheme, grouping together relevant technologies that may appear in a wide 
range of traditional patent classes (Veefkind et al. 2012, Angelucci et al. 2018).  

However, patent data also have drawbacks.  While patent counts should be expected to 
increase as R&D activity increases, the correlation need not be exact.  Variations in patent law, 
both across countries and across time, must be controlled for to properly interpret patent data.  
Furthermore, the existence of a patent does not mean that the technology has been adopted.  Indeed, 
studies of the economic value of patents find that most patents have little commercial value, 
suggesting that adoption of most patented inventions is not widespread (e.g. Lanjouw et al. 1998).  
Moreover, firms are more likely to use patents to protect new products than new processes (Levin 
et al. 1987).  As such, patent data may understate changes in the nature of innovation as countries 
shift their environmental policy focus from end-of-the-pipe to integrated solutions leading to 
modified production process.  Because the patentability of innovations varies across technologies, 
patent data should be interpreted carefully, with the primary focus being on changing trends over 
time, rather than comparing levels of innovation across different technologies. 

Important for this caveat is that any search strategy to identify relevant patents faces a 
tradeoff between using broad searches that identify as many relevant patents as possible but also 
include some irrelevant patents or using narrower searches that filter out irrelevant articles but may 
miss some relevant ones.  Narrower search strategies are preferable, so as to avoid irrelevant 
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patents that would respond differently to policy trends and thus bias results downward.  A working 
paper by Bruns and Kalthaus (2017) provides interesting evidence on this.  Using search strategies 
from 51 different papers and looking at six different commonly used methods for counting patents, 
they develop 306 different counts of solar patents.  The level of patent activity varies widely, with 
the maximum count 243 times larger than the minimum.  They then replicate the results of two 
papers (Johnstone et al. 2010 and Peters et al. 2012) using these various counts.  While findings 
about the signs of policy effects are robust, there is variance in the magnitude of effects.  
Uncertainty is reduced if they exclude search results yielding the 10% smallest and largest patent 
counts, which may reaffirm the need to avoid overly broad search strategies.  Their results caution 
against unconscious p-hacking by researchers choosing search strategies more likely to produce 
statistically significant results, and serve as a reminder that careful theoretical justification of the 
chosen search strategy is needed. 

Other options for measuring knowledge creation are also available to researchers.  Some 
studies focus on the effects of innovation.  For instance, Knittel (2011) infers technological 
progress from changes in fuel efficiency relative to other vehicle characteristics.  The use of survey 
data has become more prominent in studies of green innovation.  Many of these papers use the 
Community Innovation Survey (CIS) as their starting point.  CIS is a bi-annual survey of 
innovative European firms.  Beginning in 2008, the CIS survey has included a block of questions 
on eco-innovation, following suggestions by Kemp and Pearson (2007) (Rogge and Schleich, 
2018).  The survey allows for more nuanced observation of eco-innovation.  While patent data are 
more suited to studying product innovations, such as end-of-pipe pollution control or new energy 
technologies, survey respondents are asked about both product and process innovation.  Moreover, 
unlike most studies using patent data, environmental benefits do not need to be the primary goal 
of a new product or process.  The definition of eco-innovation used in the survey focuses on results.  
Thus, eco-innovations could be the unexpected result of other innovative activity (Hornbach et al. 
2012). 

 
2.2. Measuring environmental policy 

To estimate the effect of environmental policy on innovation, measures of environmental 
policy are needed.  Early empirical studies used pollution abatement control expenditures (PACE) 
to proxy for environmental regulatory stringency (e.g. Jaffe and Palmer, 1997; Brunnermeier and 
Cohen, 2003).  Other studies focus on the relationship between prices and innovation, with the 
implicit link that more stringent environmental policy raises prices (e.g. Newell et al. 1999, Popp 
2002). 

A major advance in the environmental technology literature over the past decade has been 
a better understanding of the impact of different types of policy instruments.  Studies have 
considered a wider range of policy instruments.  Several studies use survey data to attain 
information on the types of policies faced (e.g. Hornbach et al. 2012, Veugelers 2012), policy 
relevance (Stucki et al., 2018), or policy consistency (Rogge and Schleich 2018).  I review these 
studies in section 3.3.  Aggregate policy effects can be assessed using outcome measures, such as 
emissions (Carrión-Flores and Ines, 2010; Carrión-Flores et al., 2013) or renewable energy 
investment (Peters et al. 2012, Dechezleprêtre and Glachant, 2014).  For example, Carrión-Flores 
and Innes (2010) use simultaneous equations to link environmental innovation and pollution.  They 
use industry-level panel data for 127 US manufacturing industries from 1989-2004.  Because 
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environmental policy is not directly observed across such a diverse range of industries, they model 
emissions as a function of unobserved environmental standards, which are themselves a function 
of technology (measured using patents), lagged policy, and a set of control variables.  Patents are 
a function of unobserved environmental R&D and the control variables, while environmental R&D 
is a function of expected and current environmental standards.  Substitution provides structural 
equations for both emissions and patents.  Using dynamic General Methods of Moments 
estimation, they jointly estimate both equations.  They find bi-directional flows between 
innovation and emissions: innovation leads to stricter environmental standards, and that 
anticipated increases in standards increase patenting.   

Finally, new databases enable more researchers to directly include both the presence and 
level of specific policy instruments in their analysis, allowing for comparison of the impact of 
different instruments on innovation.  Common data sources include the OECD Environmental 
Policy Stringency index (Botta and Koźluk 2014) and the International Energy Agency Renewable 
Energy Policy Database (IEA 2004).  In some cases, continuous measures of stringency are 
available.  For example, Johnstone et al. (2010) create continuous measures of the stringency of 
renewable portfolio standards and feed-in tariffs that have since been updated and made publicly 
available (OECD 2013).  In other cases researchers use 0/1 dummies to indicate the presence of 
various policy options.  Nesta et al. (2014) create a renewable energy policy index that counts the 
availability of eight different policies, arguing that a count of policies places additional weight on 
countries with diversified policy portfolios.  Fabrizio et al. (2017) search the IEA Renewable 
Energy Policy database to find policies pertaining to energy storage, batteries, or electric vehicles.  
Using policy descriptions, they separate policies into those designed to increase demand (e.g. tax 
credits or financing incentives) and policies to support R&D efforts (e.g. research grants), creating 
0/1 dummies for the presence of each type of policy. 

 

3. General advances on innovation and environmental policy 
Early studies of environmental induced innovation either used pollution abatement control 

expenditures (PACE) to proxy for environmental regulatory stringency or examined the effect of 
changing energy prices on innovation, providing evidence on how innovation will react to higher 
energy prices resulting from regulation. Examples of studies using PACE include Lanjouw and 
Mody (1996), Jaffe and Palmer (1997), and Brunnermeier and Cohen (2003).  These studies 
typically found a correlation between PACE and innovation.  Among the early studies on induced 
innovation and energy prices are Newell et al. (1999) and Popp (2002), both of whom document 
increased innovation following periods of higher energy prices. 

During the past decade, researchers have extended this work in several directions.  Several 
studies confirm the existence of induced innovation in different technological areas.  Multiple 
studies look at innovation in the automobile sector.  In the US, transportation was responsible for 
28.5% percent of greenhouse gas emissions in 2016, exceeding the share from the electric power 
sector for the first time (US EPA, 2018).  Transportation accounts for over 55% of nitrogen oxide 
(NOX) emissions.2  As such, innovation in this sector can play a significant role reducing several 
environmental problems.  

                                                 
2 https://www.epa.gov/transportation-air-pollution-and-climate-change/smog-soot-and-local-air-pollution, accessed 
February 12, 2019. 

https://www.epa.gov/transportation-air-pollution-and-climate-change/smog-soot-and-local-air-pollution
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Crabb and Johnson (2010) amend the model of Popp (2002) to consider variables 
appropriate for the automobile sector.  They consider both the effects of expected oil prices and 
fuel economy regulations on US energy efficient automotive patents from 1980-1999.  Unlike 
much of the existing literature, they use monthly, rather than annual, data.  Knowledge decays 
more quickly but diffuses more slowly in the automotive sector than in the sectors included in 
Popp (2002).  Higher prices spur innovation, with an estimated elasticity of 0.238 between oil 
prices and patents in their primary specification, but fuel economy standards themselves do not 
spur innovation.   

Aghion et al. (2016) use firm-level patent data to explore innovation in the global auto 
industry.  Their regressions run from 1986-2005, although they use data as far back as 1965 to 
construct pre-sample variables.  They consider both clean and dirty patents pertaining to 
automobiles.  Examples of clean technologies include electric and hybrid vehicles.  Dirty patents 
pertain to internal combustion.  Patents that improve the fuel efficiency of internal combustion 
engines are categorized as “gray”, allowing for sensitivity checks on the coding of such patents.  
Higher fuel prices incentivize more innovation in clean technologies, with an estimated elasticity 
around 0.98 for just “clean” technologies (e.g. electric and hybrid vehicles), and an elasticity 
between 0.4 and 0.6 if including “gray” technologies (e.g. energy efficiency).  Thus, their estimated 
elasticity for purely clean technologies is higher than Popp (2002) or Crabb and Johnson (2010), 
but similar in magnitude if they include energy efficiency patents, as those previous papers did.  
Once again, other policies (emissions regulation and R&D subsidies) have little effect on 
innovation.   

Like Popp (2002), they consider both demand and supply side influences.  Because they 
use firm-level data, they consider the effect of both a firm’s own previous knowledge stock as well 
as spillovers from other firms.  As most automobile firms are multinational, they include inventors 
from multiple countries. Spillovers are weighted by the geographic location of a firm’s inventors 
– e.g. inventors in the US are more likely to be exposed to spillovers from other US inventors than 
from inventors in Japan.   Unlike previous work, they interpret the effects of previous knowledge 
stocks as evidence of path dependency.  Firms with previous clean technology innovation 
experience are more likely to continue to produce clean innovations, as are firms exposed to more 
clean technology spillovers.  In contrast, access to more dirty spillovers both increases dirty 
innovation and reduces clean innovation. While these results are consistent with an interpretation 
of path dependency, it is also notable that a firm’s own stock of dirty knowledge increases clean 
innovation (although with a magnitude less than half of that of the firm’s clean knowledge stock).  
Thus, other interpretations of a firm’s own knowledge, such as overall adaptive capacity of the 
firm (e.g. Cohen and Levinthal 1989), may also be consistent with the knowledge stock results in 
this paper. 

While each of these papers use patents as a measure of technological progress, Knittel 
(2011) uses the relationship between fuel efficiency and vehicle characteristics to infer rates of 
technological progress. He models a vehicle’s fuel economy as a function of weight, horsepower, 
and torque.  Technological process is neutral in Knittel’s main model.  He observes that the average 
fuel economy of new US automobile passenger vehicles increased by less than 6.5 percent, while 
average horsepower increased by 80 percent from 1980-2004.  Had weight, horsepower, and 
torque been held constant at their 1980 levels, fuel efficiency could have increased by nearly 60 
percent.  Consistent with induced innovation, the estimated effect of technological progress is 
largest in years with high gasoline prices.  Whereas Crabb and Johnson (2010) find no effect of 
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fuel efficiency standards on patenting, Knittel finds they have a positive effect on observed 
technological progress for cars, but not for trucks.   

Turning from fuel efficiency to emissions control, Lee et al. (2011) consider how different 
types of regulation affect innovation for automobile emissions control technology.  Using data for 
the US auto industry from 1970-2008, they ask whether performance-based technology-forcing 
regulations spur innovation.  While command-and-control regulations are typically criticized for 
inducing less innovation, they note that regulations focused on performance standards allow 
flexibility as to how the performance targets are met. Moreover, designing targets that exceed 
current technological capabilities may encourage firms to innovate to meet new policy goals.  
Thus, stringency of regulation is important.  Similar to studies using PACE, they measure 
stringency based on EPA cost estimates for automobile emission control devices, which they 
interact with several time period dummies to capture the effect of different policy regimes.  
Patenting is highest under the technology-forcing regulations of the 1970 and 1990 Clean Air Acts.  
Policy affects both auto assemblers and part manufacturers.  Interestingly, the 1970 regulations 
spurred more innovation from US firms than foreign ones, but there is no such difference after the 
1990 Clean Air Act.  While their paper offers no welfare analysis of whether technology-forcing 
regulations are a better option than other policies, it does provide evidence that such regulations 
can inspire innovation for firms to comply with more ambitious targets. 

Also pertaining to the transportation sector, Kim (2014) uses a panel of 12 countries from 
1990 to 2012 to ask how a country’s energy resource endowments affect innovation.  She contrasts 
innovation on technologies designed to reduce fuel consumption in vehicles (such as fuel cells, 
hybrid and electric vehicles and energy efficiency) with innovation designed to enhance fuel 
supply (e.g. oil extraction and petroleum refining).  As in other studies, higher gasoline prices 
promote innovation on automotive technologies.  Higher gasoline prices also discourage 
innovation on oil extraction.  However, countries with larger oil endowments perform less 
innovation on automotive technologies designed to reduce energy consumption.  Interestingly, 
they also perform less innovation on petroleum refining technologies, primarily because much of 
the innovation on refining aims to improve the environmental performance of refineries.  Thus, 
the energy endowments of countries may work against attempts to promote clean energy 
innovation through environmental policy. 

Two papers, Noailly (2012) and Costantini et al. (2017), examine innovation for energy 
efficiency in the residential sector such as insulation, energy-efficient boilers, lighting, and 
building materials.  In Europe, national building codes set energy requirements for new buildings.3  
Noailly (2012) studies the effect of these policies on innovation to improve energy efficiency in 
buildings.  To control for energy prices, she constructs a weighted average of energy prices 
relevant for the residential sector – including electricity, natural gas, and petroleum –with weights 
corresponding to usage rates in each country.  Whereas studies on the auto industry and on 
renewable energy find prices play an important role, here it is changes to the stringency of building 
codes that induce innovation.  Energy prices are insignificant in all model specifications.  This is 
consistent with the notion that market failures such as principal-agent problems reduce the impact 
of energy prices on residential energy consumption.  Confirming this, Noailly notes that prices do 
have an effect on innovation for visible and portable technologies, such as boilers and lighting, but 
not for less-visible technologies such as insulation that are installed by builders and are not easily 

                                                 
3 This differs from the US, where most building code regulations are at the state or local level.   
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modified.  Her results provide support for continued use of building code regulations to address 
concerns about energy consumption in residential buildings.   

Costantini et al. (2017) compare the effect of demand-pull policies, such as energy prices, 
technology-push policies, such as R&D subsidies, and “soft” instruments such as information 
provision and voluntary tools designed to increase consumer awareness of energy efficiency.  
Capturing soft instruments accurately illustrates the measurement challenges highlighted in section 
2.2.  Here, the authors collect data from the EIA data base on Energy Efficiency Policy and 
Measures (IEA, 2013).  They use 0/1 indicators for the presence of three different types of policies 
(informational, institutional support, and voluntary approaches such as labeling).  They aggregate 
these to get a single count of relevant “soft” policies in place for a given country and year.  Because 
energy efficiency innovations may occur in a wide range of fields, they use a combination of 
keywords and IPC classes to identify relevant patents.  While Costantini et al. find that demand-
pull policies have a greater impact on innovation, unlike Noailly (2012), they do not include energy 
efficiency standards in their set of controls.  Thus, their results cannot address the relative 
effectiveness of prices over building codes for residential energy efficiency.  Soft and systemic 
policies have a smaller and less robust positive effect on innovation. 

Lazkano et al. (2017) apply Aghion et al.’s (2016) empirical strategy to energy storage 
innovation, including its interaction with renewable and efficiency-improving fossil fuel 
innovation.  Energy storage projects to be an important complement to intermittent renewable 
energy sources such as wind and solar.  Compared to wind and solar energy, energy storage 
technologies are at an earlier stage of the technology life cycle, and this paper is one of the first to 
examine these technologies.  Using firm-level data on internal and external knowledge for energy 
storage, renewable, and conventional energy storage, they ask how firm experience with energy 
storage innovation affects innovation across each of the three aforementioned energy types.  
Previous renewable energy innovation spurs additional energy storage innovation.  Similarly, 
because it complements intermittent renewables, advances in energy storage help promote 
additional innovation on renewable energy sources such as wind and solar.  Interestingly, energy 
storage also increases innovation that improves energy efficiency for fossil fuels, and the effect 
seems to be largest for what are known as “baseload” fossil fuels such as coal.  These fuels are less 
likely to be replaced by renewable energy, which seems to explain this novel result. 

Finally, a recent working paper by Gerarden (2018) emphasizes the importance of 
considering induced innovation when evaluating policy effectiveness.  Gerarden analyzes the 
effect of consumer subsidies for solar panels.  Such subsidies both increase demand for solar panels 
and encourage producers to innovate to reduce costs.  By permanently reducing future costs, the 
benefits of induced innovation may extend be yond the life of a subsidy.  Simulating the external 
benefits of German solar subsidies, he finds that accounting for induced innovation increases the 
benefits of these subsidies by at least 22%. 
 
3.1. Where Does Green R&D Come From? 

Another recently emerging area of empirical research on green innovation addresses the 
source of these innovations.  Previous climate policy modeling work highlight the importance of 
this question.  Using the ENTICE model, Popp (2004) begins with a base case that assumes one-
half of new energy R&D crowds out other R&D.  In this case, induced innovation increases welfare 
by 9%.  Assuming no crowding out increases the welfare gains from induced innovation to as 
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much as 45%, while assuming full crowding of R&D reduces welfare gains to as little as 2%.  
Gerlagh (2008) extends this work by separately modeling the choice of carbon-energy producing 
R&D, carbon-energy saving R&D, and neutral R&D.  In such a case, it is carbon-producing R&D, 
rather than neutral R&D, that is crowded out by induced carbon-energy saving R&D.  As a result, 
the impact of induced technological change is larger, with optimal carbon taxes falling by a factor 
of 2. 

Given the range of possible outcomes depending on assumptions about crowding out, 
understanding the sources of green R&D is important.  Gray and Shadbegian (1998) find that more 
stringent air and water regulations had a positive impact on paper mills’ technological choice in 
the US, but that the increased investment on abatement technologies came at the cost of other types 
of productivity-improving innovation.  Hottenrott and Rexhaüser (2015) find that regulation-
induced environmental innovation crowds out R&D in other technologies, especially for small 
firms that are credit constrained. Because their data include both clean and dirty patents, Aghion 
et al. (2016) also contribute to the recent literature on where green energy innovation comes from.  
A 10 percent increase in fuel prices not only increases clean innovation by nearly 10 percent, but 
also reduces innovation on dirty technologies by about 6 percent.  

Popp and Newell (2012) use patent and R&D data to examine both the private and social 
opportunity costs of climate R&D. Looking first at R&D spending across industries, they find that 
funds for energy R&D do not come from other sectors, but may come from a redistribution of 
research funds in sectors that are likely to perform energy R&D. Given this, they link firm-level 
patent and financial data to take a detailed look at climate R&D in two sectors – alternative energy 
and automotive manufacturing – asking whether an increase in alternative energy patents leads to 
a decrease in other types of patenting activity. They find evidence of crowding out. Interestingly, 
the patents most likely to be crowded out by alternative energy research are innovations enhancing 
the productivity of fossil fuels, such as energy refining and exploration. This is consistent with the 
notion that any apparent crowding out reacts to market incentives – as opportunities for alternative 
energy research become more profitable, research opportunities for traditional fossil fuels appear 
less appealing to firms. 

Noailly and Smeets (2015) use patent data on both fossil fuel and renewable energy 
technologies for over 5000 European firms from 1978-2006.  While Popp and Newell compare 
rates of patenting for different types of technologies, they do not consider how policy affects these 
rates.  In contrast, Noailly and Smeets ask whether policy shifts innovation away from fossil fuels 
towards renewable energy – a test more directly in line with the modeling efforts of Gerlagh 
(2008).  Following the directed technological change literature, they consider the role of energy 
prices, market size, and the existing knowledge stock.  For renewable energy, market-size captures 
the effect of demand-pull policies.  They make a distinction between “mixed” firms that have both 
types of patents and firms that specialize in one technology or the other.  Using zero-inflated count 
data models allows them to study patenting behavior at both the intensive (rate of innovation) and 
extensive (decision to patent) margin. They find that increases in the share of renewable energy 
patents come primarily from entry of specialized renewable firms and exit of specialized fossil 
fuel firms.  Both higher fossil fuel prices and increased renewable market size encourage 
renewable energy innovation.  Among mixed firms, innovation remain largely concentrated in 
fossil fuel technologies.  

Marin (2014) looks at a different aspect of crowding out, asking whether the returns to 
firms for environmental R&D are different than the returns from other types of R&D.  Combining 
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balance sheet and patent data for Italian manufacturing firms, Marin considers both the decision 
to do R&D and the effect of R&D on firm productivity.  Environmental innovation leads to smaller 
productivity gains for firms, suggesting an indirect crowding out effect. However, Marin does not 
directly test whether greater investment in environmental R&D leads to less investment in other 
types of R&D.    

Another important question pertaining to the source of clean R&D is who performs such 
R&D.  Studying innovation in the US electricity market, Sanyal and Ghosh (2013) make a 
distinction between upstream technology suppliers and downstream buyers of technology.  After 
deregulation of electricity markets in the 1990s, utilities reduced investment in equipment.  
Overall, innovation at equipment suppliers fell as a result.  However, equipment suppliers who 
produce pollution abatement equipment increased innovation due to new Clean Air Act 
regulations.  

Franco and Marin (2017) examine innovation in 13 manufacturing sectors across 8 
European countries, making a similar distinction between upstream and downstream firms.  The 
investigate both the weak and strong versions of the Porter Hypothesis, where the weak version 
hypothesizes that environmental regulation spurs new innovation, and the strong version 
hypothesizes that new innovation is sufficient to offset the costs of environmental regulation, so 
that overall productivity of regulated firms may increase after regulations are in place.4  To address 
potential endogeneity between regulations, innovation, and productivity, Franco and Marin use 
patents in other sectors in the same country and patents in the same sector in other countries as 
instruments. They find evidence for both the weak and strong versions of the Porter Hypothesis, 
as stringency of environmental regulations not only increases innovation, but innovation also 
mediates the potential negative effects of environmental regulation on productivity.  The effect is 
strongest for regulations affecting downstream firms.  In contrast, regulations on upstream sectors 
constrain innovation and thus have a negative impact on productivity.  This work highlights that 
both direct and indirect effects of environmental regulation are important. 

 
3.2. Identification of policy effects on innovation 

Increased availability of firm-level data allows researchers to identify the effects of policy 
using quasi-experimental methods, comparing firms above and below regulatory thresholds.  
However, as the discussion on who performs clean R&D suggests, careful interpretation of such 
studies is warranted, as environmental policy need not only induce innovation at regulated firms 

For example, Calel and Dechezleprêtre (2016) take advantages of criteria for inclusion in 
EU-ETS to develop a matched set of regulated and unregulated firms.  Inclusion is based on 
individual plant characteristics, not firm characteristics.  Using firm-level data on innovation, they 
compare low-carbon innovation in firms that have at least one plant covered by EU-ETS to a 
matched control group of firms with no such plants.  They find matches for 3,428 of the 5,568 
regulated firms in their data set.  Regulated firms have 36.2% more low-carbon patents than 
unregulated firms.  However, because these firms are a small subset of all firms, this results in just 
a 0.38% increase in low-carbon patents for the EU as a whole. 

                                                 
4 While the induced innovation studies reviewed here provide evidence related to the weak Porter Hypothesis, 
evaluating the strong Porter hypothesis requires data linking environmental regulation to firm performance.  Such 
studies are beyond the scope of this review.  Cohen and Tubb (2018) provide a recent review and meta-analysis. 
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Because innovation in response to environmental regulation also occurs at upstream 
equipment manufacturers (e.g Sanyal and Ghosh 2013) and at new entrants to the market (e.g. 
Noailly and Smeets 2015), economy-wide studies of innovation, such as those using country-level 
patent data, will capture these innovations, while firm-level studies may not.  Calel and 
Dechezleprêtre acknowledge this possibility and address it indirectly by studying jointly filed 
patents that include regulated and unregulated firms.  Low-carbon patents at the unregulated co-
inventors experienced no increase after EU-ETS. However, they do not look at downstream 
suppliers specifically. 

Two recent working papers provide preliminary evidence on the potential magnitude of 
these additional patents.  Miller (2014) notes that innovation could occur both at upstream 
suppliers and at downstream users of technologies.  For example, if EU-ETS leads to higher 
electricity prices, users of electricity may innovate to improve energy efficiency and reduce 
electricity consumption.  Miller estimates that simply focusing on the direct effect of innovation 
by regulated firms underestimates induced innovation from EU-ETS by 71%.  Calel (2018) argues 
that imperfect appropriability makes the returns to innovation greater for treated firms than non-
treated firms, so that the induced innovation should be larger for treated firms.  However, his 
theoretical model does not distinguish equipment users from suppliers.  In his empirical work, 
Calel compare patent counts from EU-ETS regulated firms and the top 100 non-ETS innovators.  
Both types of firms see an increase in patenting after EU-ETS.  However, only if all of the increase 
in patenting from top innovators was attributable to the EU-ETS would the aggregate effect on 
innovation be as large as found by Miller (2014).  These studies suggest there is still much work 
to be done to understand the drivers through which policy induces innovation.  While quasi-
experimental studies of treated effects offer valuable evidence on the effects of environmental 
regulation on firm performance, for studies of innovation it is important to remember that directly 
treated firms aren’t necessarily those who innovate in response to new regulation.  Complimentary 
studies, such as surveys of innovative firms, can help identify process innovations that may benefit 
treated firms but that firms may not choose to patent, as well as offer a better understanding of 
how regulations faced by downstream consumers affect innovation.  I turn to studies using survey 
data next.  
 
3.3. Survey data 

Given the challenges measuring research efforts and output, several papers use surveys of 
innovative firms to assess green innovation.  Many of these papers use the eco-innovation 
questions in the Community Innovation Survey (CIS), described in section 2.1, as their starting 
point.  Hornbach et al. (2012) and Veugelers (2012) are among the first papers to make use of the 
eco-innovation survey in CIS.  Hornbach et al. (2012) uses data from the 2009 German CIS.  They 
ask whether different types of eco-innovations, such as process innovations or end-of-pipe 
pollution control, arise from similar or different motivations.  Not surprisingly, regulation is a more 
important driver of eco-innovations than for other types of innovation.  The marginal effects of 
regulation on eco-innovation are highest for end-of-pipe emissions reduction.  Within eco-
innovations, cost savings, rather than regulation, are the main motivation for energy saving 
innovations.  Subsidies are important for reducing CO2 emissions.  The authors note that reducing 
CO2 emissions was still a relatively young innovation area at that time, so that public research 
subsidies were important.  Customer demand is an additional motivation for eco-innovation, 
particularly for products.  Looking at how eco-innovations affect firm results, innovations that 
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reduce material consumption lead to higher turnover, whereas energy savings increase short run 
costs, and thus reduce short run turnover. 

Demirel and Kesidou (2011) also address the distinction between product and process 
innovation.  They use a 2005-06 survey of 289 United Kingdom firms carried out by the 
Department for Environment, Food and Rural Affairs.  The survey distinguishes between end-of-
pipe eco-innovation, integrated process innovation, and environmental research and development.  
Note that positive firm responses to the first two may be evidence of technology adoption, rather 
than invention.  Their results suggest a U-shaped relationship between regulation and innovation.  
In response to regulation, firms are more likely to choose either low cost adoption of existing 
technology or innovation to find a better solution, but are not more likely to invest in integrated 
process innovations.  As in other studies, cost savings are the main driver of process innovations.  
Environmental taxes have no effect on any category of eco-innovation, which they argue may be 
because of the low tax levels used in the UK. 

Veugelers (2012) examines data from the 2006-2008 Flemish CIS eco-innovation module.  
She uses the data to compare the influence of environmental regulation and taxes to R&D 
subsidies.  Interestingly, voluntary sectoral codes of practice agreed upon between regulators and 
polluters and existing or expected demand from consumers are the most important drivers of eco-
innovations.  Regulations and taxes are more important for promoting adoption, rather than 
innovation, of clean technology.  While government subsidies are generally less important, like in 
Hornbach et al., they appear more important for reducing CO2 emissions, supporting the finding 
that subsidies are more important for emerging technologies.  Veugelers concludes that her results 
remind policymakers of the importance of the “private innovation machine,” which governments 
must leverage to successfully promote eco-innovation. 

Costa-Campi et al. (2015) use survey data spanning 2008-2011 from the Technological 
Innovation Panel (PITEC), which provides data on Spanish firms to determine factors encouraging 
these firms to pursue energy efficient innovation.  Because energy efficiency improvements may 
involve process innovation, and because energy efficiency spans a range of technological areas 
(e.g. more efficient lighting, better building design), survey data can provide information not likely 
identified by simply using patent data.  Energy efficient innovation appears to be connected to 
broader technological improvements embodied in capital, as capital spending predicts energy 
innovation, but neither internal nor external spending on R&D does.  Larger firms are more likely 
to consider energy efficiency innovation important, as are firms that consider environmental 
impacts to be an important innovative goal.  Firms perform energy efficient innovation t meet legal 
requirements, but public R&D subsidies have no impact. 

Survey data allow a better understanding of the decision-making process of firms.  
Moreover, by asking about the perception of environmental regulation, such surveys allow a more 
nuanced look at the effects of regulation on innovation than simple measures of policy stringency.  
Rogge and Schleich (2018) exemplify how survey data provides information on policy nuances 
not available otherwise.  They designed their own survey instrument, using the German 
Community Innovation Survey as a starting point.  They consider not only the mix of policy 
instruments used, but also the credibility, consistency, comprehensiveness, and coherence of 
policy instruments.  In their work, consistency considers how well different elements of the policy 
mix align; credibility addresses the extent to which the policy mix is believable; 
comprehensiveness considers how extensive and exhaustive the mix of policies is; and coherence 
considers whether policy making and implementation are synergistic.  Their data include responses 
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from 390 German energy companies, all received in 2014. Both the consistency and credibility of 
policy is important, suggesting that innovators need strong political signals.  Regarding the types 
of policy instruments used, both technology push (via public R&D support) and demand pull 
(represented by expected increases in green sales) encourage more green innovation. 

Cecere et al. (2019) use survey data to understand how technological opportunities affect 
green innovation. They construct a firm-level panel data set that combines survey data from the 
Mannheim Innovation Panel (MIP) with patent data from the European Patent Office.  MIP is 
based on the Community Innovation Survey for Germany. Unlike Community Innovation Surveys 
in other countries, it is conducted annually.  Cecere et al. include firms with at least one 
information and communications technology (ICT) patent from 1992-2009.  They use patent data 
to identify fields with high and low innovation potential, based on whether patents in the field are 
still growing.  Separating ICT innovation into “Green” ICT and “Pure” ICT, firms with at least 
one patent in high opportunity fields the previous year are more likely to have a Pure ICT patent 
the following year.  Thus, high-opportunity firms stay in their technological domain, making them 
less likely to switch to green innovation.  In contrast, firms in low-opportunity areas are less likely 
to innovate, but more likely to change direction towards green innovation.  This raises an 
interesting policy conundrum that is not explored by Cecere et al.  Policy efforts to encourage 
green innovation are more likely to affect the research direction of firms currently working in low-
opportunity areas.  But, does the fact that these firms were in low-opportunity areas suggest they 
are less likely to produce high-impact research? 

In sum, increased use of survey data to study green innovation has allowed a more nuanced 
look at the effects of policy on green innovation.  Direct regulation appears more likely to stimulate 
end-of-pipe innovation than process innovation.  This may suggest new policy instruments are 
needed to encourage firms to think more about reducing the creation of pollution, rather than end-
of-pipe treatment.  By providing evidence on firm perceptions, these surveys also illustrate the 
importance of policy consistency.  In turbulent political times, providing signals of such 
consistency will be an important challenge for governments to address. More research on what 
features of policy make it consistent and credible will be important for this effort. 
 

4. Cross-country studies of green innovation 
Two topics on green innovation in particular have received significant attention over the 

past decade.  One is an increasing number of studies with an international dimension.  In this 
section I summarize the contributions of this work.  A second is the effectiveness and choice of 
various policy instruments.  I discuss research on policy instruments in sections 5 and 6. 

Many early studies of green innovation focused on a single country, often the United States.  
Expanding data to include multiple countries helps verify the applicability of results across a range 
of economic conditions. For example, Ley et al. (2016) compares the effect of energy prices on 
“green” and “non-green” innovations.5  Their study includes both multiple technologies and 
multiple countries. Because they calculate industry-specific energy prices, they can include 
country-specific time fixed effects to control for country-specific shocks that may be correlated 
with both innovation and energy prices.  They show that omitting such effects biases the effect of 

                                                 
5 They use the OECD Indicator of Environmental Technologies (OECD 2012) to identify green technologies in 
seven different environmental areas.  
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energy prices downward.   A 10 percent increase in average energy prices over the previous five 
years leads to a 3.4% increase in green inventions, and a 4.8% increase in the ratio of green to non-
green inventions.   

By providing more variation in the types of policy instruments used, studying multiple 
countries allows researchers to compare the effectiveness of different policy instruments, as 
explained in greater detail in section 5 (e.g. Johnstone et al. 2010).  Cross-country studies also 
raise questions specific to an international context.  In this section I discuss two such questions: 
the relative influence of domestic and foreign environmental policies on innovation and the role 
of knowledge spillovers and technology transfer across international borders. 

 
4.1. Domestic vs. foreign environmental policies 

Most early work on environmental innovation focused on the effect of domestic 
environmental policies – e.g. policies enacted where innovation takes place.  One early exception 
is Popp (2006), which examined the effect of SO2 and nitrogen oxide (NOX) regulations in the US, 
Japan, and Germany.  While innovation responds to domestic, rather than foreign policy changes 
across these three countries, the study focuses on just three countries, each of which are leaders in 
the pollution control field.  More recent work considers a larger range of countries and provides 
evidence for when foreign policies matter. 

Dekker et al. (2012) study the effect of international agreements on innovation.  Using a 
difference-in-differences specification, they ask whether innovation for sulfur dioxide (SO2) 
abatement technologies increases in countries that sign the Helsinki and Oslo protocols.  
Acknowledging the cross-border nature of SO2 pollution, both protocols committed signatories to 
significant SO2 emission reductions.  However, not all major polluters signed the protocols, with 
Japan, Poland, the UK and US being notable exceptions.  Innovation does increase in signatory 
countries just prior to and in the year of signing the protocol.  As in Popp (2006), the increase in 
innovation does not appear to be permanent, however.  Such a result is consistent with the notion 
that command and control regulations setting specific targets temporarily increase innovation to 
meet new targets, but do not incentivize continued improvement.  Local regulations in Germany 
also encourage innovation, but the advent of the 1990 Clean Air Act in the US did not spur 
innovation in the US.  The authors argue that is because the largest innovator in SO2 control 
technologies at that time was Japan.   

Two recent studies compare the effect of domestic and foreign environmental policy for 
renewable energy.  In a study of 15 OECD countries using patent data form 1978 to 2005, Peters 
et al. (2012) find both domestic and foreign demand-pull policies (such as renewable portfolio 
standards or feed-in tariffs) are important for the development of solar PV technology, but that 
technology-push policies such as R&D subsidies only affect domestic innovation.  To address 
potential endogeneity for solar PV R&D subsidies, they use public R&D funding for other 
renewable technologies as instruments.  In contrast, Dechezleprêtre and Glachant (2014) compare 
wind energy patents across OECD countries, using data from 1991-2008. Their observations are 
country pairs, as they look at both the source (e.g. where patents are filed from) and destination 
(e.g. where patents are granted) of invention.  While both domestic and foreign demand-pull 
renewable policies positively affect renewable technology innovation, the marginal effect of 
policies implemented at home is 12 times higher.  However, since the foreign market is much 
larger than the domestic market across the sampled countries, the overall impact of foreign policies 
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is on average twice as large as the overall impact of domestic policies on innovation.  They note 
that both trade barriers and weak intellectual property rights dampen the influence of foreign 
policies on wind energy patenting in a given country. 

A working paper by Fu et al. (2018) find similar results comparing wind innovation across 
US states.  Their work includes indicators for different policy types, such as tax incentives and 
renewable portfolio standards.  They consider both the effect of own-state policies and a spatially 
weighted average of policies in other states.  Policy type matters.  For renewable portfolio 
standards, the overall level of policy in the US induces innovation.  However, for financial 
incentives such as tax incentives and subsidies, it is own state policy that increases innovation.  
The authors argue that this is because suppliers must live in the state to take advantage of state-
level tax incentives. However, because of the relative market sizes, the marginal effect of own-
state financial incentives on innovation is smaller than the marginal effect on other-state renewable 
portfolio standards.  Thus, market size appears most important for spurring innovation. 

Fabrizio et al. (2017) compare the effect of policy on domestic and foreign innovation for 
energy storage.  Combining data on energy storage policies in 11 OECD countries from 1990-
2011 with data on energy storage patents from 61 countries during the same time frame, they show 
that demand-pull polices both promote domestic innovation and increase technology transfer 
coming into the country, measured as domestic patent applications filed for technologies that 
originally filed for patent protection elsewhere.  Unlike the aforementioned papers, their sample 
includes patents from countries not directly regulating energy storage, showing that increased 
innovation from environmental policy may come from abroad.  In contrast, technology-push 
policies promote domestic innovation, but do not increase technology transfer. 

Using data on green patents from a set of 1200 multinational corporations (MNCs), Noailly 
and Ryfisch (2015) consider the globalization of green R&D.  For the MNCs in their sample, about 
17% of green patents result from R&D investments outside of the MNCs home country.  In most 
cases, green R&D not performed at home occurs in other OECD countries, although China is also 
an important destination, particularly for lighting and solar technologies.  Stringent environmental 
regulation attracts green R&D to a country, but so do lower wages for scientists and engineers and 
strong intellectual property protection. 

Finally, a working paper by Brunel (2018) asks whether environmental regulation 
stimulates domestic economies, using innovation as a driving mechanism.  She first estimates the 
effect of environmental policy on innovation, and then considers how the resulting innovation 
affects manufacturing production.  She distinguishes between new inventions (those never filed 
anywhere else before) from transfers of existing technology (e.g. patents previously filed abroad).  
While environmental policy increases patent filings by about 30 percent, these patent filings are 
mostly transfer of existing foreign technology.  The exception is in the leading innovative countries 
of the US, Japan, and Germany.  These results suggest that early innovators have a first mover 
advantage, and that the innovative capacity of a country is just as important as policy support.  
Brunel then asks how technology adoption affects renewable energy imports and exports.  Using 
gravity equations for each, she shows that a one percent increased stock of renewable energy 
patents leads to a 0.146 percent increase in exports, with no effect on imports.  Patents coming 
from abroad appear to be filed to protect local production, rather than imports.  Thus, for most 
countries, renewable energy policies stimulate the economy through manufacturing, rather than 
through innovation. 
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In sum, these studies comparing the influences of domestic and foreign policy illustrate 
that demand is important, but also global in nature.  Market size matters, so that while demand-
side policies promote innovation, the resulting innovation need not occur at home.  In contrast, 
supply-side policies, such as R&D support, tend to favor local inventors.  These distinctions are 
important for policy makers who often promote clean technology policies as a way to create new, 
high paying jobs for the local economy. 
 
4.2. Knowledge spillovers across countries 

Knowledge spillovers across countries are another important issue for cross-country 
studies to address.  Such spillovers are a form of technology transfer.  However, unlike direct 
production (as in the aforementioned paper by Brunel) or imports of technology into a country 
(e.g. embodied technology transfer), flows of knowledge across countries represent disembodied 
technology transfer.  These knowledge flows help recipient countries gain the know-how or 
experience needed to improve productivity and innovate on their own.  For countries that are not 
first-movers in green technology, they can be an important entry point into green innovation.6   

The aforementioned Dekker et al. (2012) study on international agreements also provides 
evidence of technology transfer.  Dekker et al. distinguish between “mother” patents and patent 
families.  Patent protection is country-specific.  Inventors must file for protection in each country 
where they wish to enforce their patent rights.  Mother patents (often referred to as priority patents) 
represent the first filing to protect an idea in any country.  Family patents represent related filings 
of the same idea in other countries.  Dekker et al. observe increases in both mother patents (e.g. 
local innovation) and patent families in countries signing the Helsinki and Oslo protocols.  The 
increase in patent family filings show that inventors from other countries are more likely to file 
patent applications in a given country when regulation provides a market for their technologies. 
Thus, regulation leads to both new innovation and technology transfer of new innovations from 
other countries. 

Verdolini and Galeotti (2011) extend Popp’s (2002) induced innovation framework to a 
panel of 17 countries.  Adopting methods from Peri (2005), they create external and internal 
knowledge stocks for each country.  Internal knowledge stocks are a function of previous patents 
in the country.  External stocks represent knowledge produced abroad that cross into the country.  
For a set of energy efficient and environmentally friendly technologies similar to those first studied 
in Popp (2002), they use patent citation data to model the probability that a patent from country j 
receives a citation (and thus crosses into) country i.  Interestingly, and in contrast to studies in 
other technological domains, once knowledge crosses a country border, increased physical 
distance does not reduce the probability of citation. However, increased technological distance 
does, where technological distance measures similarities in the types of patents granted in each 
country pair. 

Verdolini and Galeotti then include these knowledge stocks in an induced innovation 
regression that also considers the role of energy prices, environmental policy, and public R&D 
spending on green innovation.  Knowledge stocks play an important role.  A 10% increase in 
domestic knowledge increases patenting by 3%, and a 10/% increase in foreign knowledge 
increases patenting by 9.6%.  Thus, foreign knowledge spillovers are particularly important.  In 

                                                 
6 Popp (2011) provides a more complete review of international technology transfer as it relates to green technology. 
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contrast, a 10% increase in the energy price index increases patenting by just 6%.  Interestingly, 
when splitting the sample into top five innovators and other countries, the effect of domestic and 
foreign knowledge is similar for the top five innovators, whereas the impact of foreign 
technologies is even larger for other countries. 

Building on this work, Stucki and Woerter (2017) ask whether technological followers 
might benefit from a “wait-and-see” strategy whereby they wait for knowledge spillovers to close 
the gap between themselves and technology leaders.  If possible, countries could avoid locking in 
higher cost green technology inventions.  They distinguish between two impacts of available 
knowledge.  Knowledge spillovers stimulate current innovation.  At the same time, accumulating 
knowledge in a specific technological domain may reduce a firm’s flexibility, leading to path 
dependency.  For instance, firms with substantial non-green knowledge bases may find it difficult 
to switch to green innovation when market conditions change.  Their data span 22 manufacturing 
industries for 13 countries from 1980-2009.  Their dependent variable is the green technology gap 
between industry i in country j and the technology leader in industry i.  The technology gap is 
measured as the log of the ratio of green patents in the leader country over green patents in country 
j.  Increases in both an industry’s internal stock of green patents the overall stock of green patents 
in the country reduce the technology gap, suggesting that positive spillover effects are important.  
However, an increase in foreign green knowledge increases the technology gap.  Thus, Stucki and 
Woerter’s results suggest that while foreign spillovers may enhance innovation, they do not enable 
late movers to catch up to technology leaders.   A wait-and-see strategy does not appear beneficial. 

Given the importance of international spillovers, Conti et al. (2018) ask whether policy can 
provide coordination among countries.  Using patent citations to track knowledge spillovers, they 
show that renewable energy innovation in the European Union has become more integrated over 
time.  The probability of citations between EU countries increase over time, while domestic patent 
citations fall.  This pattern is not observed for fossil-fuel based energy sources, nor is it observed 
for other emerging technologies such as IT or biotechology. Thus, their findings provide 
suggestive evidence that EU policy support for renewables helped reduce fragmentation in 
renewable energy innovation in individual member states.  However, they caution that the EU 
renewable energy innovation system remains more geographically localized than the US or Japan, 
so that more work remains to be done. 

Knowledge spillovers may also come from related industries.  Grafström (2018) considers 
both spillovers within the wind power industry itself and from related machinery fields.  Using 
patents from 8 European countries from 1978-2008, he finds evidence of international spillovers 
from both other country’s wind inventions and inventions in related fields (e.g. machines with 
rotors or pumps).  However, Grafström does not present results with both wind and related 
machinery knowledge included in the same regression, likely due to collinearity concerns. Thus, 
the results for each knowledge stock do not control for any potential relationships in innovation in 
these two related fields.  

 

5. Policy instruments 
Policymakers have a range of instruments available to regulate environmental quality. 

Command-and-control regulations direct a specific level of performance. For instance, 
performance standard sets a uniform control target for firms (such as pounds of sulfur dioxide 
emissions per million BTUs of fuel burned), but do not dictate how this target is met. Technology-
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based standards specify the method, and sometimes the actual equipment, that firms must use to 
comply with a particular regulation, such as requiring that a percentage of electricity be generated 
using renewable sources. Market-based policies establish a price for emissions, either directly 
through the use of fees, such as a carbon tax, or indirectly through the use of permits that can be 
bought and sold among firms, such as in the US SO2 market or the European Union’s Emission 
Trading System for carbon. 

Historically, economists have argued that market-based policies provide greater incentives 
for innovation. Market-based policies provide rewards for continuous improvement in 
environmental quality, whereas command-and-control policies penalize polluters who do not meet 
the standard, but do not reward those who do better than mandated (Magat 1978, Milliman and 
Prince 1989, Fischer et al. 2003).  However, more recent research suggests that the effects are 
more nuanced.  Simply getting the prices right by accounting for environmental externalities is not 
sufficient to promote green innovation.  Looking at renewable energy policy, recent theoretical 
models by Fischer et al. (2017) and Lehmann and Söderholm (2018) explore the role of other 
market failures justifying targeted renewable energy support policies as part of a menu of policy 
solutions.  For example, to promote the development of electric vehicles, charging stations must 
be in place. However, the private sector has little incentive to provide charging stations without 
existing demand from electric vehicles. In the case of such network externalities, clear technology 
standards provide guidance to firms as to the expected future direction of technology (Vollebergh 
and van der Werf, 2014).  I discuss evidence on potential market failures supporting targeted policy 
support in section 6.  Here I focus on studies comparing the effectiveness of different policy 
instruments. 

Given the ambiguous predictions of theoretical models, empirical evidence on the effects 
of various market instruments on innovation is important.  Early studies suggest differences 
between policies matter, even among market-based policy options.  Johnstone et al. (2010) 
compare price-based policies such as tax credits and feed-in tariffs to quantity-based policies such 
as renewable energy mandates and find important differences across technologies.  Quantity-based 
policies, such as renewable energy certificates, favor development of wind energy.  Of the various 
alternative energy technologies, wind has the lowest cost and was closest to being competitive 
with traditional energy sources during their study period.  As such, when faced with a mandate to 
provide alternative energy, firms focus their innovative efforts on the technology that is closest to 
market.  In contrast, direct investment incentives are effective in supporting innovation in solar 
and waste-to-energy technologies, which are further from being competitive with traditional 
energy technologies.  This result suggests that even policies purporting to be technology neutral, 
such as renewable energy mandates, can favor one technology over another. 

Building on the work of Johnstone et al. (2010), several studies use data on specific policies 
to explore the effectiveness of different policy types.  Fabrizi et al. (2018) use a country-level 
panel of green patents in 23 European countries from 2003-2012.  Using the OECD Environmental 
Policy Stringency index, they create separate indicators for market-based and non-market-based 
policies.  While market-based policies consistently induce greater innovation, the effect of non-
market-based policies is generally insignificant.  Using a panel of Norwegian firm-level data on 
patents and environmental regulations faced by each firm, Klemetsen et al. (2018) show that direct 
command-and-control innovation can spur innovation if the costs of non-compliance are 
meaningful.  They create a measure of the implicit costs of regulation based on firm-level data on 
annual emission permits, inspections, and violations.  Firms with more serious violations – and 
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thus in greater danger of being sanctioned – create more green innovations.  Kim et al. (2017) use 
data from 16 OECD countries from 1991-2007 to estimate a system of equations identifying the 
effectiveness of demand-pull and technology-push policies on wind and solar innovation.  They 
estimate equations for patenting activity, per-unit installed system cost, and cumulative installed 
capacity, which allows them to simulate the effect of policies on both innovation and diffusion.  
Technology-push policies both encourage short-run invention and lead to long-run cost reductions.  
Price-based policies such as feed-in tariffs perform better than quantity-based policies in the long-
run, by encouraging cost reductions over time 

Reichardt and Rogge (2016) provide a case study of offshore wind innovation in Germany.  
Their interviewees suggest that feed-in tariffs were the most important policy supporting offshore 
wind development.  As offshore wind is more expensive than onshore wind, this is consistent with 
Johnstone et al.’s finding that direct financial support is more important for technologies further 
from the market.  Using US time series data, Horner et al. (2013) find that renewable portfolio 
standards increased wind innovation, but that tax-based incentives did not.  Böhringer et al. (2017) 
use a panel of patent data for 7 different renewable energy technologies in Germany from 1990-
2014.  Variation in feed-in tariff rates over time allows them to compare the effect of feed-in tariffs 
across technologies.  Their model does not allow them to compare policy instruments, but rather 
the magnitude of effectiveness of a single instrument (feed-in tariffs) across different technologies.  
In their data, wind, rather than solar, experiences the greatest increase in innovation from feed-in 
tariffs. To assess the importance of the relative mix of policies in a country, the aforementioned 
Costantini et al. (2017) create a measure of policy mix balance between demand-pull and 
technology-push policies and a measure of comprehensiveness as the stock of total policies divided 
by the sum of policy instruments (e.g. are all types of policy instruments represented).  Both policy 
balance and comprehensiveness enhance innovation for energy efficiency.   

Two studies consider the role of energy market of market liberalization on innovation.  
Jamasb and Pollitt (2011) examine descriptive data on patenting in the UK electricity sector, 
showing that patents for non-nuclear electricity and renewable technologies increased after market 
liberalization.  Nesta et al. (2014) ask how market liberalization affects the impact of renewable 
energy policies on innovation.  They create indices for both renewable energy policy and electricity 
market deregulation, using data from the International Energy Agency (2004) and OECD, and 
address potential policy endogeneity using both in-sample instruments (e.g. two-year lags of 
policies) and out-of-sample instruments (age of democratic institutions and share of decentralized 
energy before liberalization).  They find that renewable energy policy and deregulation are 
complementary – renewable policies induce more innovation in countries with liberalized energy 
markets. 

In addition to policy, firms may pursue environmental protection voluntarily, either in 
response to perceived consumer pressure or to deter future regulation.  Carrión-Flores et al. (2013) 
consider whether the US Environmental Protection Agency’s 33/50 program increased 
environmental innovation.  Soon after publicly releasing the Toxic Release Inventory (TRI) 
database, the EPA created the 33/50 program to encourage the largest polluters to voluntary reduce 
pollutants by 33 percent in 1992 and by 50 percent by 1995.  Using the same simultaneous 
equations model as Carrión-Flores and Innes (2010), described in section 2.2, they find short-run 
run increases in environmental patenting among participating firms.  However, several years after 
the program’s end, participating firms had fewer environmental patents.  The cumulative effect 
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over the entire 11 year period is negative – participating firms were, overall, less innovative than 
non-participating firms. 

Popp et al. (2011) use pulp and paper manufacturing to ask whether pressure from 
consumers for green goods can spur innovation. Efforts to reduce chlorine usage in the bleaching 
stage of pulp production grew rapidly in the 1990s, after a Greenpeace studies linking dioxin from 
bleaching process raised awareness of chlorine persisting in paper products after manufacture.  The 
first wave of innovation on technologies to reduce chlorine use occurred before regulations 
requiring the use of these technologies, suggesting consumer pressure does play an important role.  
In contrast, product labeling schemes promoted by many countries produced little innovative 
response.  Perhaps because labeling schemes are voluntary, these schemes appear to incorporate 
existing technologies in their criteria, rather than serving as technology-forcing standards.  
Regulation in Sweden and Finland did produce a second wave of innovation to perfect these 
technologies.  In contrast, the US and Canada delayed regulation, and appeared to develop 
regulations based on the availability of existing technologies.  Their regulations did not induce 
new innovation.  Thus, regulatory stringency is important. 

Kesidou and Demirel (2012) ask how corporate social responsibility (CSR) affects levels 
of environmental R&D.  Using UK survey data, they consider consumer demand for green 
products, implementation of voluntary environmental management systems, and stringency of 
environmental regulations.  Using a selection model, they find that consumer demand and CSR 
initiatives work at the extensive margin only – they affect the firm decision to do environmental 
R&D, but do not increase the level of environmental R&D.  In contrast, firm environmental 
management initiatives affect both intensive and extensive margins. Using quantile regressions, 
they find that environmental regulation spurs innovation among both the least and most innovative 
firms, but has less impact on other firms.  Instead, the potential of cost-savings spurs environmental 
innovation among those firms in the middle quantiles. 

In sum, the evidence on innovation based on voluntary environmental performance is 
mixed.  Popp et al. (2011) find that concerns about negative consumer pressure initiated an initial 
wave of innovative activity to reduce residual chlorine in manufactured paper products, and 
Carrión-Flores et al. (2013) observe an initial wave of innovation after the US EPA’s 33/50 
program began.   But these effects are short-lived, and cost-savings, rather than corporate social 
responsibility, are the main drivers of environmental innovation in Kesidou and Demirel’s (2012) 
work. 

 
6. Should policy be technology-neutral or technology-specific? 

In addition to choosing from an array of environmental policy instruments, policy makers 
must also determine the relative balance between policies designed to address environmental 
market failures (e.g. externalities) versus those designed to address knowledge market failures.  As 
noted earlier, environmentally friendly innovation suffers from two market failures: environmental 
externalities and knowledge spillovers.  Knowledge spillovers provide benefit to the public as a 
whole, but not to the innovator.  As a result, private firms do not have incentives to provide the 
socially optimal level of research activity.  Economists studying the returns to research consistently 
find that knowledge spillovers result in a wedge between private and social rates return to R&D, 
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suggesting that socially beneficial research opportunities are ignored by firms because they are 
unable to fully capture the rewards of such innovations.7 

An important policy question is whether targeted policies addressing knowledge market 
failures specifically for green innovation are necessary.  Because knowledge market failures apply 
generally across technologies, can these market failures be addressed by economy-wide policies, 
leaving it to environmental policy to “get the prices right” to encourage green innovation?  Or, are 
there other market failures specific to green innovation that require targeted policies?   

Three recent applied theoretical papers provide guidelines for when targeted policies may 
be needed.  Lehmann and Söderholm (2018) present a partial-equilibrium model of the electricity 
sector that illustrates when targeted, rather than technology-neutral, renewable energy policies are 
justified.  This model provides the framework for a review of existing literature to determine when 
evidence supports such policies.  Their work highlights the importance of additional market 
failures, such as: 

• Learning-by-doing, which justifies additional deployment policies to hasten 
technology development 

• Path dependency, where switching costs lead to lock-in of established technologies 

• Capital market failures, such as risk aversion, that limit the amount of private capital 
available for renewable energy 

Fischer et al. (2017) model technology choice in the US electricity sector.  They extend 
the work of Fischer and Newell (2008), allowing for additional details such as improved energy 
efficiency and distinguishing between “conventional” and “advanced” renewable energy sources 
to capture differences in costs and innovation potential.  Their results suggest governments should 
supplement broad-based polices with limited subsidies for technologies furthest from the market.  
Such subsides will be most effective if they target other market failures.  For example, if learning-
by-doing is important, the experiences of early entrants provide lessons for future technology 
development, suggesting subsidies for emerging technologies would help.  R&D subsidies help 
lower future costs and are particularly valuable when knowledge spillovers are high.  Their 
simulation results suggest R&D market failures are more important than learning-by-doing, so that 
R&D spending is more effective than targeted deployment policies.  However, current policy 
efforts favor deployment schemes justified through learning-by-doing. 

Acemoglu et al. (2016) present an endogenous growth model with both clean and dirty 
technologies.  Their model emphasizes the technology-push role of science policy.  Innovation 
provides new research opportunities that stimulate future innovations.  If the clean technology is 
far behind, initial R&D subsidies are needed to make private R&D on clean technology profitable.  
This may be due to path dependencies and to the potential for higher returns to research for a still 
emerging technology. 

As all three papers highlight cases when targeted support for renewables is justified, either 
though deployment support or increased R&D spending, evidence from empirical studies is 

                                                 
7 Examples of such studies include Mansfield (1977, 1996), Pakes (1985), Jaffe (1986), Hall (1996), and Jones and 
Williams (1998).  Typical results include marginal social rates of return between 30 and 50 percent.  In comparison, 
estimates of private marginal rates of return on investments range from 7 to 15 percent (Bazelon and Smetters 1999, 
Jones and Williams 1998, Hall 1996). 
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important to guide policy decisions.  Below I review evidence on each of the potential knowledge 
market failures mentioned above: differential spillovers from green R&D, spillovers from learning 
by doing, path dependency, and potential capital market failures. 

 
6.1. Spillovers 

Government investment in R&D is justified by the high social returns to R&D investment.  
However, this is true for all technologies, not just green technologies.  Thus, an important question 
becomes whether spillovers from green innovation are larger, so that government R&D should 
play a larger role for green technologies.  Here I review empirical literature relevant to these 
concerns. 

Several recent papers use patent citations to study spillovers from energy innovations.  
Patents contain citations to earlier patents that are related to the current invention.  The citations 
are placed in the patent after consultations among the applicant, his or her patent attorney, and the 
patent examiner.  Citations received by a patent, known as forward citations, indicate that the 
knowledge represented in the patent was utilized in a subsequent invention.  These citations can 
be seen as evidence of knowledge flows, and thus potential spillovers.  Similarly, backward 
citations, or citations made to earlier parents, provide evidence of the building blocks of 
knowledge used in creation of a new invention.8 

Spillovers from energy research need not only benefit future energy researchers.  Nemet 
(2012a) uses patent citations to study inter-technology knowledge flows for energy patents granted 
between 1976 and 2006.  He uses forward citations as a measure of quality and backward citations 
to determine the fields upon which patents draw inspiration.  A citation is considered “external” if 
it is to a patent in a different technical classification.  Energy patents with more backward citations 
to external patents receive more forward citations within the 10 years after patent issue, suggesting 
that such patents provide greater social value.  Notably, most forward citations come from non-
energy patents, suggesting that energy research has general application.  However, Nemet does 
not provide similar analysis for non-energy patents, and thus cannot determine whether energy 
patents are more general than other innovations.   

A working paper by Dechezleprêtre et al. (2017) addresses this question by comparing the 
magnitude of knowledge spillovers from clean and dirty technologies in electricity production and 
the transportation sectors.  They find evidence that clean patents generate larger knowledge 
spillovers than the dirty technologies they replace.  Moreover, the magnitude of knowledge 
spillovers in clean technologies is comparable to other emerging technological fields such as IT or 
nanotechnology.  Popp and Newell (2012) find similar evidence, comparing alternative energy 
patents to other patents from the same firms.  Alternative energy patents are cited more frequently 
and are more general than all patents in all technologies except computers.9  The results of both 

                                                 
8 The key assumption here is that a citation made to a previous patent indicates a flow of knowledge from the cited 
patent to the citing patent, so that patents cited more frequently are considered more valuable to future inventors.  
Jaffe, Fogarty, and Banks (1998) investigate the validity of this assumption, using evidence from citations made to 
NASA patents. They conclude that, although there is noise in the citation process, aggregate citation patterns 
represent knowledge spillovers, although the spillover may be indirect. 
 
9 Generality is measured using a Herfindahl index of the various patent classes cited by the patent. 
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papers provide support for public R&D funding of clean technologies, as underinvestment due to 
knowledge externalities might be particularly high these technologies. 

Bjørner and Mackenhauer (2013) provide contrasting evidence, using data on Danish 
companies from 2000-07.  Rather than simply focusing on patent citations, they use survey data to 
estimate stocks of knowledge related to R&D spending.  They include both internal and external 
knowledge in their models, where external knowledge represents spillovers from other firms’ 
R&D.  While external knowledge provides spillover benefits, they find no evidence that energy 
R&D provides greater spillovers than other types of R&D.  Unlike Dechezleprêtre et al. (2017) or 
Popp and Newell (2012), they do not distinguish between clean energy R&D and other types of 
energy R&D.  Still, their results suggest that the evidence for favoring energy over other 
technologies when determining levels of government support is not clear cut, and that more 
research is needed.  

R&D is highly uncertain.  The returns to R&D are highly skewed.  While most innovations 
generate little social value, a few highly successful innovations may generate millions of dollars 
of value (e.g. Pakes 1986).  Popp et al. (2013) address the uncertainty, studying the determinants 
of patent citations for six different energy technologies: wind, solar, fuel cells, nuclear, hybrid 
vehicles, and energy efficiency.  They compare regression results pooling all six technologies to 
models estimated separately for each, as well as comparing models estimating the conditional 
mean effect to quantile regression results.  Differences across technologies, rather than differences 
across quantiles within technologies, are more important.  The value of successful technologies, 
such as wind and hybrid vehicles, persists longer than those of less successful technologies.  They 
conclude that their results provide evidence that success is the culmination of several advances 
building upon one another, rather than resulting from one single breakthrough.  Moreover, they 
find evidence of diminishing returns at high levels of research activity.  Combined, these results 
suggest that long-term sustained research support may be more effective than short bursts. 

Noailly and Shestalova (2017) provide further evidence knowledge spillovers are 
technology specific.  Using European patent data from 1978-2006, they compare patent citations 
to innovations in energy storage, solar, wind, marine energy, hydropower, geothermal, waste 
energy, and biomass energy. They ask which technologies generate the most spillovers and 
consider where these spillovers go.  Using solar energy as the base technology, both wind (10% 
more) and energy storage (40% more) generate more forward citations than solar patents.  All 
other patents generate fewer citations.  For wind, these spillovers are generally within the same 
technological domain.  Solar and energy storage generate spillovers both within and outside their 
own technology domain.  They conclude that wind will need less policy support once its internal 
knowledge base is large enough, whereas the larger external spillovers for solar and energy storage 
suggest government support will play a more crucial role for those technologies. 

 
6.2. Learning-by-Doing 

Knowledge market failures may also result from learning-by-doing (LBD).  Learning-by-
doing occurs when the costs to manufacturers or users fall as cumulative output increases (Arrow, 
1962, Rosenberg, 1982).  LBD commonly is measured in the form of “learning” or “experience” 
curves that estimate how much unit costs decline as a function of experience or production.  A 
typical learning curve estimation regresses costs of installation (or production) at different points 
in time as a function of cumulative installed capacity (or sometimes cumulative output) in log-log 
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fashion. The resulting elasticity coefficient on cumulative capacity in these models (α) is often 
translated into a so-called “learning rate” (1-2α) giving the percentage change in costs resulting 
from a doubling in cumulative capacity.  Typically, studies on new energy technologies find faster 
learning for younger technologies, with estimates clustering around 15-20% for alternative energy 
sources such as wind and solar energy (McDonald and Schrattenholzer 2000). 

While learning curves provide useful information on changing costs, simple learning 
curves have limited ability to establish causation between experience and costs.  Thompson (2012) 
notes that standard learning curve models collapse a complex set of processes into a single reduced 
form equation.10  This is important, as the relative contributions of learning from experience versus 
R&D determine both the optimal timing of policy (e.g. Goulder and Mathai 2000) and the choice 
of policy instruments (Fischer et al. 2017).  If learning is present, the early producers of a 
technology generate knowledge through the production and usage of technology, rather than 
through R&D activity. If these benefits of learning spill over to other producers, policy should 
subsidize early actors.11 

Several recent papers address these concerns by developing richer models that identify 
different channels of learning.  Kellogg (2011) uses oil well productivity data in Texas from 1991 
to 2005.  He observes experience for both oil production companies and drilling contractors.  
Productivity increases with joint experience – a drilling rig improves productivity twice as fast if 
it works with a single producer, rather than switching between partners.  A working paper by 
Covert (2015) uses data on hydraulic fracturing in North Dakota from 2005-2012.  Because he 
observes data on well location and inputs, Covert argues that endogeneity from omitted variables 
are unlikely to be a concern, since engineering limitations prevent firms from selecting inputs 
using information he does not observe.  He estimates a semi-parametric production function using 
a two-step process that first estimates productivity conditional on location, and then integrates out 
unobserved location characteristics.  Oil companies exhibit some learning, but increased future 
profits by only 20-60% of what was possible by improving fracking design over time.  Firms 
appear to overweight data from their own operations relative to competitors when making drilling 
decisions. 

A recent working paper by Fetter et al. (2018) develops links between environmental 
disclosure regulations, learning, and innovation.  Because of concerns over the effects of toxic 
chemicals used during hydraulic fracturing, several states require well operators to disclose the 
chemicals used in drilling.  Fetter et al. study such a law enacted in Pennsylvania in 2011, finding 
evidence of learning in response to public disclosure.  The chemical mixtures used at different 
wells became more similar after disclosure. However, the increase in similarity appears to dampen 

                                                 
10 A set of papers by Klaasen et al. (2005), Söderholm and Sundqvist (2007), and Söderholm and Klaasen (2007) 
address this concern by attempting to disentangle the separate contributions of R&D and experience by estimating 
“two-factor” learning curves for environmental technologies.  These two-factor curves model cost reductions as a 
function of both cumulative capacity (learning-by-doing) and R&D (learning-by-searching, or LBS).  Söderholm 
and Sundqvist address potential endogeneity between investments in capacity and R&D and find LBD rates around 
5 percent, and LBS rates around 15 percent, suggesting that R&D, rather than learning-by-doing, contributes more 
to cost reductions.  However, these results are very sensitive to the model specification, illustrating the difficulty of 
sorting through the various channels through which costs may fall over time. 
11 In addition to positive externalities from LBD cost reductions, subsidizing deployment of technology may address 
other market failures, such as peer effects among consumers (e.g. Bollinger and Gillingham 2012) that help 
encourage diffusion, even if costs do not fall over time. 
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innovation.  The most productive well operators, and thus those most likely to be imitated by 
others, decrease experimental activity after the disclosure requirement. 

A working paper by Bollinger and Gillingham (2014) develops a model of installer pricing 
behavior that considers the role of economies of scale, market power, and dynamic pricing, which 
they apply to solar photovoltaic installations in California.  They instrument for on-going contracts 
using variation in mean solar radiation, assuming that consumers are more likely to consider 
installing solar power in sunnier months, and county-level monthly housing prices.  They find 
evidence of both internal and external learning.  Using their results to calibrate an optimal subsidy 
for solar PV, the subsidy initially increases to take advantage of learning, but declines as the LBD 
externality becomes less relevant.  Their results suggest that California’s solar PV subsidy cannot 
be justified by learning externalities alone. 

Nemet (2012b) looks for evidence of learning and knowledge spillovers in California wind 
turbines, using data on turbines installed between 1982 and 2003.  His data is a panel that includes 
annual production for each wind farm.  To look for potential learning spillovers, he includes three 
measures of experience: (1) cumulative electricity produced by time t, (2) cumulative experience 
produced by the time of installation, to capture learning relative to wind farm siting decisions and 
technology choice, and (3) cumulative turbines installed by the time of installation.  For each, he 
includes both internal and external experience.  Nemet finds evidence of both internal and external 
learning.  However, learning is subject to diminishing returns and decays quickly.  Thus, 
technology-specific subsidies become ineffective and expensive at some point, suggesting that 
deployment subsidies should be part of a policy mix, but not the only policy instrument chosen. 

Finally, Tang (2018) considers the role of learning from both wind turbine producers and 
operators.  Her model includes learning through R&D, wind farm operation experience, turbine 
manufacture experience, and previous collaborations between operators and turbine 
manufacturers.  Similar to Kellogg’s results for oil wells, wind farm operation improves with 
experience, and these improvements are greater if the wind farm developer collaborates with the 
same turbine manufacturer.  The regulatory framework also matters.  Learning effects are greatest 
when the transmission system is operated by an independent system operator or regional 
transmission organization, rather than vertically integrated transmission systems owned by major 
utilities.  Independent system operators face no competing interests when dispatching generation 
sources on the grid, reducing barriers for renewable energy adoption. 

In sum, recent evidence on learning-by-doing provide some evidence of external benefits 
from learning, but not of a magnitude sufficient to be the only justification for deployment 
subsidies.  Moreover, papers such as Kellogg (2011) and Tang (2018) suggest that these 
externalities can be partially internalized through lasting partnerships between suppliers and 
downstream users of technologies. 
 
6.3. Path Dependency 

Notably fewer empirical studies address path dependency explicitly.  Notable exceptions 
are the previously cited papers by Aghion et al. (2016) on the auto industry and Stucki and Woerter 
(2017) on green innovation, both of which find evidence of path dependency.  These papers use a 
firm’s previous patents on both green and non-green innovation to see how previous research 
results affect the direction of current research.  While not a main focus of their paper asking 
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whether policy shifts innovation from fossil fuels to renewable energy, Noailly and Smeets (2015) 
note that the importance of knowledge stocks in their work could be interpreted as evidence of 
path dependency.  Similarly, while Popp et al (2013) do not explicitly mention path dependency 
in their analysis of energy patents, Lehmann and Söderholm (2018) interpret the result that 
successful clean energy innovation depends on a sequence of incremental inventions that build 
upon one another as evidence of path dependency.  As these examples illustrate, studying path 
dependency for green innovation requires detailed data, so as to distinguish between green and 
non-green innovation histories. 

Rexhäuser and Löschel (2015) compare the importance of technology-push factors for 
renewable energy and energy efficiency innovation.  They link patent data to firm-level survey 
data from the Mannheim Innovation Panel for 376 German companies active in energy R&D 
between 1992 and 2009.  Using patent counts for each type of innovation as the dependent variable, 
the lagged dependent variable has a larger effect on renewable energy innovation, which they 
interpret as a more important role for path dependency.  They explain that the average renewable 
firm likely specializes in a specific technology (e.g. wind), whereas most firms do not specialize 
in energy efficiency per se, but rather products where energy efficiency is just one relevant feature.  
They are careful to note, however, that a lagged dependent variable may pick up other individual 
effects not picked up by controls, so that path dependency is not the only possible interpretation. 

Because successful innovation depends on both demand-side and supply-side motivations, 
the simple finding that innovators follow research paths that appear more promising is not a market 
failure.  Path dependency creates a market failure if switching costs make it difficult for firms 
previously investing in one type of technology to switch to profitable opportunities in another 
(Lehmann and Söderholm, 2018).  Aghion et al. (2016) conclude their paper with a numerical 
simulation showing that path dependency creates lock-in for dirty innovation in a world without 
policies supporting clean technology (such as a carbon tax or R&D subsidy), but that path 
dependency reinforces the growth of clean technology once such policies are in place.  However, 
none of the aforementioned empirical papers explicitly test whether the observed path dependency 
results from high switching costs or are simply a reaction to better research.  Given the importance 
of path dependency as a justification for technology-specific policy interventions, more research 
on path dependency, particularly connecting path dependency to switching costs, is needed. 
 
6.4. Capital Market Failures 

Particularly for the clean energy sector, capital market imperfections that impede the 
transition of innovations from the laboratory to commercialization may also justify government 
funding for green innovation.  Such concerns are often described as a “Valley of Death”.  Both 
Mowrey et al. (2010) and Weyant (2011) argue that government research helps new energy 
technologies overcome roadblocks to commercialization. For instance, significant energy 
innovations typically have disproportionately large capital expenses, leaving a role for 
collaboration with the public sector to provide support for both initial project development and 
demonstration projects.  

Howell (2017) provides evidence of financing barriers for clean energy technology.  She 
provides a quasi-experimental evaluation of US Department of Energy (DOE) Small Business 
Innovation Research (SBIR) program.  Founded in 1982, SBIR requires federal agencies to 
allocate 2.7% of their extramural R&D budgets to small firms.  DOE officials rank grant 
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applicants, using a cutoff exogenous to the ranks.  This allows Howell to use a regression 
discontinuity design comparing successful and rejected applicants just above and below the cutoff.  
Receiving an SBIR grant from DOE increases a firm’s chance of receiving private venture capital 
investment from 10% to 19%, and nearly doubles the probability of firm survival and successful 
exit.  Recipient firms earn more revenue and receive more patents.  As a result, reallocating support 
from larger, later stage grants to more numerous small, early stage grants to younger firms may 
achieve better outcomes and help smaller firms move new ideas from the initial research stage to 
technology commercialization.  Moreover, the effects of SBIR funding are largest for newer clean 
energy firms.  Grants are ineffective for older technologies such as coal, natural gas, and biofuels.   

Two other recent works also emphasize the importance of access to financing.  Al Mamum 
et al. (2017) uses panel data from 25 OECD countries to show that growth of equity and credit 
markets promotes clean energy production.  The effect is larger in countries with higher rates of 
innovation.  Brunnschweiler (2010) shows that underdeveloped financial sectors hinder 
deployment of renewable energy in developing and transition economies.  While not directly 
related to innovation, the results illustrate how underdeveloped credit and finance markets reduce 
demand for clean energy, thus reducing incentives for innovation as well. 

Given the importance of financing constraints, a recently emerging literature considers the 
role of venture capital for renewable energy.  Nanda et al. (2015) provide descriptive data 
comparing clean energy innovations supported by venture capital to other clean energy 
innovations, showing venture capital patents are cited more frequently.  However, they argue that 
the nature of energy markets may reduce the potential of venture capital in clean energy.  These 
concerns include the capital intensity of energy production, the long time frame, and the difficulty 
for successful ventures to find an “exit” strategy where they are purchased by a larger company.  
Similarly, comparing venture capital investments in clean energy, software, and medicine, Gaddy 
et al. (2017) find that clean energy ventures perform less well than software, but not worse than 
medicine.  They also argue that their study suggests venture capital is poorly suited for clean 
technology.  Cumming et al. (2017) consider crowdfunding as an alternative to venture capital.  
They collect data on crowdfunded projects from Indiegogo.  7.4 % of projects pertain to clean 
technology.  While potential entrepreneurs are able to use the crowdfunding platform to reduce 
information asymmetries with investors, clean technology offerings are no more successful than 
other crowdfunded projects, and appear to be perceived as more risky. 

Popp (2017) provides evidence of the long time frame needed to bring new energy 
technologies to market.  He uses citations made by patents to earlier scientific publications to trace 
the evolution from more basic research represented in a scientific article to a commercializable 
idea.  The probability of a scientific article being referenced by a patent peaks 15 years after article 
publication.  This lag is longer than found in studies of other fields (e.g. Branstattter and Ogura, 
2005; Finardi, 2011), suggesting that the length of time necessary for commercialization of energy 
R&D creates another barrier to raising financial support. 

Overall, the evidence on capital market failures for energy is limited but suggestive of such 
market failures.  Howell’s work provides specific evidence of financial constraints mattering for 
small businesses, and recent descriptive work on clean technology venture capital suggests venture 
capital is not ideally suited for clean technologies.  Evidence of long citation lags between 
publications and patents for energy technologies suggests investors will need to wait longer for 
investments to pay off than they will in other sectors.  Further research in a wider range of settings 
could help here.  For example, while demonstration projects are an important recipient of 
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government investment, most research on demonstration projects remains descriptive (e.g. Nemet 
et al. 2018).  In addition, Howell’s (2017) finding that SBIR funding is most effective for clean 
energy technologies raises the question of the extent to which financial constraints hinder clean 
energy investment, relative to a lack of demand for emerging clean technologies that historically 
have not been cost-effective without government support.  That is, is the Valley of Death for energy 
research really due to the special characteristics of energy innovation, or simply a result of 
historically underpriced environmental externalities reducing demand for cleaner technology?  
Both falling costs and increased policy support from governments may provide future researchers 
evidence needed to better identify the effects of financial constraints from other market failures 
holding back clean technology.   

 

7. Effectiveness of Government R&D 
Independent of whether market failures justify more green R&D investments from the 

public sector, such investments are growing.  For example, the “Mission Innovation” pledge signed 
by a coalition of 20 governments at the December 2015 Paris climate meeting promised a doubling 
of government renewable energy R&D budgets to over $30 billion by 2021 (Sanchez and Sivaram 
2017).  Thus, evaluating the impact of public R&D investments on innovation is important. 

Most studies addressing government R&D simply include public R&D expenditures as one 
of several variables in more general studies of the drivers of innovation.  For example, Johnstone 
et al. (2010), Verdolini and Gaelotti (2011), Peters et al. (2012), Dechezleprêtre and Glachant 
(2014), and Nesta et al. (2014) include public R&D expenditures in models testing the role of 
energy prices and or policy on renewable energy patenting.  All but Nesta et al. (2014) report a 
positive effect of R&D spending on patenting. 

Costantini et al. (2015) provide evidence that the state of technology development matters 
for government R&D effectiveness.  They compare patenting in conventional first-generation 
biofuels to patenting in more advanced second generation biofuels.  Combining keyword and 
patent classification analysis, they identify biofuels patents in 35 countries from 1990-2010.  In 
addition to the role of public R&D, they consider two demand-side policy instruments: a quantity 
based mandates of biofuel usage, and excise tax exemptions as an example of price instruments.  
For first generation biofuels technology, public R&D spending has no effect on country-level 
patent count, but both fuel mandates and the excise exemption induce patenting.  However, for 
more advanced second generation biofuels, public R&D plays an important role, as do excise 
exemptions.  Fuel mandates have no impact on second generation biofuels innovation.  Thus, 
technology-push policies are not important for more mature technologies, but are needed to foster 
development in emerging, more advanced technologies. 

To more directly focus on the effectiveness of public energy research, Popp (2016) links 
data on scientific publications to public energy R&D funding.  For evaluating public research 
funding efforts, publication data provide a more appropriate outcome measure than patents, thus 
shedding light on the process through which public R&D helps develop scientific knowledge.  To 
account for potential endogeneity in R&D funding decisions, instrumental variables for R&D 
spending are used, including spending on related technologies (e.g. using biofuels R&D as an 
instrument for solar energy R&D spending) and instruments modeling the political process 
determining R&D funding.  The paper provides three key results.  First, $1 million in additional 
government R&D funding leads to 1-2 additional publications, but with lags as long as ten years 
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between initial funding and publication.  Second, including either non-linear terms for R&D 
spending or dummy variables representing years with large R&D increase, adjustment costs 
associated with large increases in research funding are of little concern at current levels of public 
energy R&D support.  These results suggest that there is room to expand public R&D budgets for 
renewable energy, but that the impact of any such expansion may not be realized for several years.  
Finally, as the ultimate goal of government energy R&D funding is not an article, but rather a new 
technology, Popp uses citations from patents to scientific literature to link these articles to new 
energy patents.  While public funding does lead to new articles, lags in both the creation of a new 
publication and the transfer of this knowledge to applied work mean that public R&D spending 
may take over a decade to go from new article to new patent. 

Moving forward, the long lags before the full effect of R&D spending are realized have 
important implications for future work on public R&D programs.  Most studies evaluating the 
effect of government R&D on innovation consider just contemporary or one-year lagged energy 
R&D.12 While these studies often find small effects of energy R&D on private sector innovation, 
failure to consider sufficient lags call these results into question, suggesting instead that these 
papers are merely picking up spurious relationships between the factors determining energy R&D 
funding and those driving renewable energy innovation in the private sector, such as changes in 
energy prices.  Future researchers should thoroughly explore the potential lagged effects of public 
R&D programs. 

Governments can also support research by facilitating flows of knowledge across research 
institutions.  Popp (2017) examines citation patterns between journal articles and patents, focusing 
on the value of knowledge from different institutions, including universities, private sector, and 
government laboratories.  Better understanding of the value of knowledge from these institutions 
can help decision makers target R&D funds where they are most likely to be successful.  Research 
performed at government institutions appears to play an important translational role linking basic 
and applied research, as government articles are more likely to be cited by patents than any other 
institution, including universities.  Universities play a less important role in wind research than for 
solar and biofuels, suggesting that wind energy research is at a more applied stage where 
commercialization and final product development is more important than basic research. 

Networks that result from R&D cooperation also help transfer knowledge and drive 
innovation (Powell et al., 1996). There is emerging evidence that collaborative research produces 
higher-quality research output, which in turn can translate into innovation. For example, in a study 
of papers and patents, Wuchty et al. (2007) show that teams of researchers tend to produce more 
highly cited and higher impact outputs compared to individuals.  Popp (2017) finds that for 
alternative energy technologies, both scientific articles and patents with authors from multiple 
types of institutions (e.g., university and corporations) are cited more frequently, suggesting that 
collaborations may have positive impacts on research quality.   

Fabrizi et al. (2018) study participation in research networks promoted by the European 
Union, hypothesizing that that larger research networks complement the effects of demand-side 
policies.  These networks can help overcome imperfect information and provide coordination of 
                                                 
12 Exceptions include Peters et al. (2012), who state that they test multiple lags and stocks of public R&D in 
unreported results, and Popp (2002), which uses an adaptive lag model for government R&D.  In their study of 
biofuels innovation, Costantini et al. (2015) test policy lags up to three years but determine that a one-year lag best 
fits the data.  However, they apply the same lag to all policy variables, rather than allowing for potentially longer 
lags for public R&D spending. 
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research among firms.  They use data on participation in European Framework Programmes on 
green innovation to measure research cooperation among EU countries.  While research networks 
do enhance the effect of demand-side policies, the effect is strongest when high scientific profile 
network members, such as universities, are included in the network.  They speculate that the 
complex nature of green innovation makes these actors important. 

In a study of wind and solar PV inventor networks in Germany, Canter et al. (2016) find 
both that the level of R&D funding increases network size and that requirements for collaboration 
as part of receiving public research funding increase connections within networks.  While Canter 
et al. do not explicitly link network size to research outcomes, combining their results with those 
of Popp (2017) and Fabrizi et al. (2018) suggests that supporting collaborative R&D efforts is 
important (Hepburn et al. 2018).  

These studies provide ex post evaluations of government R&D programs.  However, policy 
makers deciding on future R&D levels must make judgements on which investments hold the most 
future promise.  Determining how much to spend on public energy R&D requires an 
interdisciplinary approach.  While economics can provide guidelines as to how funding increases 
can be implemented, engineers are better suited to determine which projects are most deserving 
from a technical standpoint.  Expert elicitation studies offer one method for projecting future 
technological progress.  Expert elicitation uses surveys of technology experts to provide insights 
on what investments look most promising.  Anadon et al. (2016) provide an example of this work.  
The authors combine the results of separate expert elicitations to provide guidelines for future 
R&D investments in nuclear, solar, carbon capture and storage, bioelectricity, and biofuels.  In 
these studies, researchers propose R&D spending levels in a survey of technology experts, who 
respond with predicted cost savings or productivity improvements.  While their panel of experts 
predict median cost savings around 20%, there is much uncertainty in the predictions, and no 
technology stands out as receiving consistently better predicted results.  Verdolini et al. (2018) 
review expert elicitation studies on energy technology.  They conclude that experts mostly believe 
increased R&D expenditures will reduce technology costs by 2030, and that diminishing returns 
to R&D are a concern.  Possible breakthroughs suggest potential annual rates of cost reduction 
around 10 percent per year. 

 

8. What’s Next? 
While the previous discussions highlight some of the most popular research areas in green 

innovation over the past decade, many questions remain to be answered, and new areas of research 
are emerging.  Here I highlight three topics with the potential for research growth: green innovation 
in emerging countries, innovation addressing adaptation to environmental problems such as global 
climate change, and the use of big data techniques to study changing innovation patterns. 

 
8.1. The Role of Emerging Economies 

Historically, most R&D took place in a few high-income countries.  In 2002, OECD nations 
accounted for 81% of global R&D, with just the United States and Japan together accounting for 
45%.  At the time, China performed about 6% of global R&D (National Science Board, 2008).  
The dominance of high-income countries among the top R&D performers held true for 
environmental innovation as well.  Using patent data from 1987-2005, Dechezleprêtre et al. (2011) 
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found that most climate-friendly innovation occurs in developed countries.  The United States, 
Japan, and Germany together accounted for two-thirds of the innovations in their sample.  While 
Dechezleprêtre et al. did find some evidence of innovation in emerging economies, innovation in 
emerging economies is often of a different nature. For example, the most prevalent innovations in 
China, South Korea, Russia, and Brazil include technologies designed primarily for local markets, 
such as geothermal and cement manufacture. Fort technologies of wider use globally, measured 
by the percentage of patents that have corresponding applications in other countries, nearly all 
were from developed economies.  As such, most of the studies cited so far have focused on high-
income countries. 

However, the global distribution of global R&D expenditures is changing.  By 2015, 
OECD nations’ share of global R&D fell to 65%.  China alone performed 21% of global R&D.  
Only the US, with 26%, performed more (National Science Board, 2018).  As such, studying the 
drivers and impact of environmental R&D from emerging economies is important.  Over the past 
decade, researchers have begun to assess environmental innovation in emerging economies, 
particularly in China.  However, much of the focus has been on policies designed to increase 
innovation in China, such as joint venture requirements, rather than the effect of environmental 
policy on innovation per se. 

The impact of technology transfer into China has received particular interest.  Luo et al. 
(2017) show that solar PV firms whose leaders studied abroad patent more frequently and provide 
knowledge spillovers to other local firms.  Howell (2018) studies potential technology transfer 
from joint ventures between Chinese and foreign auto manufacturers.  Chinese regulations require 
foreign manufacturers to produce autos as part of a joint venture with domestic firms.  High-tariffs 
limit imports, so that these joint ventures are the main entrance point into the Chinese market for 
foreign firms.  In 2009, China increased fuel economy standards.  To comply, firms would either 
need to improve technology or sacrifice quality (e.g. reducing torque).  While joint ventures are 
expected to increase access to foreign technology, Howell finds that firms with joint ventures were 
more likely to reduce quality in response to the fuel economy regulations than firms without joint 
ventures, suggesting actual technology transfer was limited. 

Groba and Cao (2015) use a gravity trade model to study drivers behind increased exports 
of wind and solar PV technology from China.  Not surprisingly, demand from high income 
countries, typically driven by policy support, plays an important role.  Technological advances 
play a limited role.  Groba and Cao use patent data to create two knowledge stocks.  Available 
foreign knowledge, based on patent applications from foreign inventors in China, represent 
potential technology transfer.  Patent applications from Chinese inventors are aggregated into a 
national knowledge stock.  They also control for government R&D spending.  Provincial R&D 
growth increases Chinese PV exports, but R&D spending from the central government has no 
effect.  They argue this is because central government R&D more often focuses on basic research.  
However, neither the national nor foreign knowledge stocks affect trade flows.  Thus, technology 
plays just a limited role increasing exports. 

These results are consistent with recent work by Lam et al. (2017), who use patent citation 
data to study the quality of wind innovation in China.  China dramatically increased the 
deployment of wind energy during the 2000s, so that by 2012 it had the most installed wind 
capacity of any country.  Similarly, the number of Chinese wind energy patents awarded to 
domestic firms increased dramatically during this time period.  However, few of these patents were 
of sufficient quality to be awarded protection abroad, and Chinese wind energy patents are cited 
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less frequently than patents from other countries.  Nonetheless, while early evidence suggests the 
quality of green innovation from emerging countries such as China has been low, future research 
should consider whether these countries become important players in the next wave of green 
innovation. 

Given the dramatic increase in Chinese wind energy deployment, several studies use 
learning curves to look for evidence of technological progress.  Tang and Popp (2016) consider 
the role of knowledge spillovers, using data on the projected costs of wind projects financed 
through the Clean Development Mechanism (CDM). These data allow them to measure both cost 
reduction and productivity improvements of wind power in China.  They consider different 
channels through which learning may occur: through research & development, from a firm’s 
previous experience, from spillovers in industry-wide experience, and through network interaction 
between project developers and turbine manufacturers to determine the impact of these learning 
channels on improving wind projects.  Tang and Popp find that wind project developers benefit 
from their past experiences with both wind farm installation and wind power generation.  More 
importantly, their study is the first to empirically test and find evidence for learning-by-interaction 
effects in wind power.  Previous collaborative experience between a project developer and foreign 
turbine manufacturer leads to the greatest reduction in both project costs and improvement of 
productivity. Their results provide evidence that joint learning occurs between partners during 
interactions on wind farm installations, and that the CDM helped achieve this goal by encouraging 
collaboration between project developers and foreign turbine manufacturers.  

Hayashi et al. (2018) update the work of Tang and Popp using actual, rather than predicted, 
performance of CDM wind turbines.  They find less evidence of learning when using actual 
performance data.  Huenteler et al. (2018) provide potential explanations.  Comparing the 
productivity of wind turbines in China and the US, they offer several reasons for poor performance 
of wind energy in China, including delays in grid connection, curtailment of energy due to grid 
management, and suboptimal turbine selection and wind farm citing.  These last features are 
locked-in for the life of a wind farm, suggesting improving the overall performance of Chinese 
wind production will take time. 

Fewer studies address the links between environmental policy and innovation in emerging 
economies.  One exception in Chakraborty and Chatterjee (2017).  As environmental policy is an 
important driver for environmental innovation, and environmental policies are often more stringent 
in high-income countries, policies in high-income countries may influence environmental 
innovation in emerging markets.  Chakraborty and Chatterjee provide an example from India.  In 
1994, Germany banned the use of ‘Azo-dyes’ in the production of leather and textile goods.  
Because Germany was one of India’s two largest consumers of textiles, Indian firms were forced 
to respond to the German regulations.  While downstream textile producers did not increase R&D 
in response to the ban, upstream dye-producing chemical firms did.  The average dye-producing 
firm increased R&D by 21.5% after the German ban, illustrating how regulations in one country 
may influence production, even in countries with weaker environmental regulation.  Given 
increased pressure on reducing the growth of greenhouse gas emissions from emerging economies, 
additional research on the links between environmental policy and innovation in emerging 
economies, including how foreign regulations may affect local innovation, is warranted. 
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8.2. Innovation for Adaptation  
Nearly all the research on green induced innovation focuses on technologies designed to 

reduce pollution.  However, concerning climate change, innovation to reduce pollution may not 
be enough.  Climate change is already occurring, and the political will to reduce greenhouse gas 
emissions sufficiently to fully prevent further changes appears lacking.  Thus, adapting to climate 
change will be an important part of any climate policy, and new technologies may play important 
roles in future adaptation.  There is a large literature on climate change adaptation and the potential 
of new technology to help.  For example, Blanc and Reilly (2017) review studies on the impacts 
of climate change on agriculture and on the potential of new crops to improve yields in the face of 
increased heat and drought.  However, few studies consider what is necessary to further encourage 
and support such innovation. 

To provide some insights into how innovation may respond to increased climate damages, 
Miao and Popp (2014) study the impact of natural disasters on innovation.  They consider 
innovative responses to three natural disasters: earthquakes, flooding, and drought.   Because past 
disaster experience not only leads to further innovation, but may also lead to other adaptive 
behavior that reduces the damages resulting from a disaster, they construct instruments based on 
the frequency and location of natural disasters.  Using a panel of patent data from 1974-2009, they 
find that a billion dollars of damage in a country from natural disasters increase innovation by 18 
to 39 percent.  They find little evidence of spillover effects on innovation in foreign countries, 
although disentangling such an effect from other year fixed effects is difficult.  While these 
innovative responses to disasters may suggest potential benefits from technological change for 
adaptation, it also raises an important question for future research: how can such innovation be 
promoted before climate damages are realized, so that technologies are in place when adaptation 
begins? 

As an example of technologies that may become more important as the climate changes, 
Conway et al. (2015) provide a descriptive look at innovation pertaining to water.  They identify 
over 50,000 patent addressing either water supply or demand from 1990-2010.  Water patents 
make up just 0.2% of all patents during this period.  While counts of both demand-side and supply-
side patents have grown, growth has been more rapid for supply-side technologies such as 
desalinization.  As with other green innovations, most patents during this period come from high-
income countries, particularly the US, Japan, and Germany.  Although some water-stressed 
countries, such as Spain, Australia, and Israel, are relatively specialized in water efficiency 
technologies, between 80 and 90 percent of water patents come from countries with low or 
moderate water scarcity.  While this occurs partially because most developed countries do not 
suffer severe water stress, it poses challenges moving forward to direct innovation towards the 
needs of lower-income countries more likely to suffer increased water stress due to climate change. 
 
8.3. The Potential of Big Data 

New data analytic techniques also open new doors for exploring green innovation.  For 
example, most studies using patent data historically identified relevant green patents using 
classifications found on patents.  Now, new techniques such as machine learning enable 
researchers to make full use of the descriptions embedded in patents and scientific publications.  
This allows researchers to distinguish between ever smaller differences in technology 
development.  Venugopalan and Rai (2015) demonstrate the possibilities of machine learning to 
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classify green patents.  They use topic modeling of patent claims and descriptions to classify solar 
PV balance of system (BOS) patents into four relevant components.  Solar PV balance of system 
components are the non-module components of a PV system, such as monitoring, power inverters, 
installation, and site assessment.  This allows them to identify trends in innovation, such as 
convergence between solar inverter and monitoring hardware.  While they do not attempt to 
establish links between technology trends and policy in the paper, their work demonstrates the 
potential for using data mining techniques to learn more about technology evolution. 

Dugoua (2018) takes machine learning a step further, developing a database of innovation 
on chlorofluorocarbon (CFC) substitutes to estimate the effect of the Montreal Protocol on 
innovation.  While the prevailing wisdom is that CFC substitutes that were readily available prior 
to signing the Protocol facilitated the agreement (e.g. Heal 2016, Sustein 2007), Dugoua provides 
evidence that this is not the case.  Identifying research on such substitutes is a challenge, however, 
as no pre-existing patent classifications exist for chemicals that are CFC substitutes.  To overcome 
this, Dugoua applies machine learning to the full text of articles and patents to identify scientific 
outputs pertaining to 14 molecules identified as substitutes for CFCs.  Using both difference-in-
difference and synthetic control models, she demonstrates that the Montreal Protocol lead to more 
than a doubling of patents and articles on CFC substitutes. 
 

9. Conclusions 
Recent history provides many successful examples of environmental innovation.  Better 

pollution control technologies, such as catalytic converters for automobiles, led to dramatic 
reductions in air pollution in the developed world.  The costs of clean energy sources such as wind 
and solar power are now low enough to be competitive with fossil fuel sources, reducing emissions 
from the electric power sector.  This paper has reviewed the recent empirical evidence on 
environmental innovation.  These studies provide evidence of successful innovation in new 
technological domains and across a wider range of countries.  They make use of new data sources, 
such as survey data, and highlight key differences across policy instruments.  Nonetheless, these 
studies also suggest new research questions deserving attention. 

As reviewed earlier, the expanded use of cross-country data, firm-level studies, and survey 
data offer new insights on environmental innovation.  Reconciling these results is important.  Firm-
level studies often separately identify treated and untreated firms.  Yet environmental innovation 
may occur at upstream suppliers.  Moreover, because of market-size effects, innovators may 
respond to policy incentives outside of domestic territory.  Consumer pressure may also matter, as 
may the perceived likelihood of policy to remain consistent and predictable across time.  
Understanding what each type of study can and cannot identify is important to create a truly broad 
picture of the full potential of environmental innovation.   

Further study can also say more on the role of different policy instruments.  Evidence 
discussed in section 6 suggests cases where targeted policy support may be justified.  But, this 
section also highlights the need for further research.  For example, do high switching costs lead to 
path dependency and lock-in of existing technologies?  As the costs of clean technologies fall, will 
private venture capital investment increase, or do other barriers to capital result in a “Valley of 
Death” for environmental technology?  
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The changing nature of technology suggests still other questions for future research.  For 
example, much of the innovation successfully lowering the costs of wind and solar power occurred 
in the private sector.  But, as the share of electricity generated by intermittent renewable power 
grows, managing the electric grid becomes more complicated.  Advances in energy storage would 
greatly improve grid management.  Energy storage breakthroughs leading to better batteries would 
also make electric vehicles more attractive to consumers, both by reducing costs and increasing 
vehicle range.  Because advances in energy storage could have spillover effects to multiple sectors, 
will public sector R&D play a more important role?  Similarly, innovation for public infrastructure, 
such as charging stations for electric vehicles, will also be needed.  Better understanding the 
potential role of private vs. public sector innovation in a changing technological environment will 
be valuable.   

Finally, a better understanding of the role of state and local policies provides yet another 
avenue for future research.  In the current US political climate, much of the action on climate and 
energy policy comes at the state, rather than federal level.  How does a patchwork of state policies 
affect energy innovation?  What can we learn from variation in policies across states?  What role 
can states play supporting basic innovation?  Such questions are important beyond the US, as 
Canadian energy policy also differs across provinces, and co-ordination of innovation across EU 
countries is of interest to policymakers (e.g. Conti et al. 2018).  The relative influence of state 
policies compared to overall market size also raises questions about links between green 
innovation and employment, as creating high-paying green jobs in local communities is often a 
secondary interest of local policy makers supporting environmental innovation (e.g. Vona et al. 
forthcoming, 2018). Recent political events have raised awareness among economists of the 
importance of the distributional effects of policy.  Scholars are now giving increased attention to 
the effects of automation and globalization on different sets of workers (Autor and Dorn 2013, 
Autor et al. 2013).  The effects of green innovation on employment merit similar attention. 
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