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Abstract 

Students in East-Asian countries dominate international assessments. One possible expla-

nation for this success is their use of ‘Lesson study’ to enhance teaching practices, but 

evidence on its effectiveness is still scant. We evaluate a national teacher development 

program in Sweden – the ‘Boost for Mathematics’ – containing core elements of Lesson 

study. Exploiting the gradual roll-out of the program across compulsory schools, we find 

that it improves teaching practices and boosts students’ mathematics performance. The 

positive effect on student performance persists also long after the intervention has ended. 

We also show that the program passes a cost-benefit test.  
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1 Introduction 
What can be learned from other school systems? Hong Kong, Singapore, Shang-

hai, Taiwan and Japan consistently dominate league tables of international stu-

dent performance, like TIMMS and PISA; in particular in mathematics and sci-

ence (OECD 2019; Mullis et al. 2020). This is a concern for many Western 

economies, since the quality of schools, and the skills developed, is linked to 

labor market opportunities and earnings (Hanushek et al. 2015; Murnane, Wil-

lett, and Levy 1995; Murnane et al. 2000; Neal and Johnson 1996) and economic 

growth (Hanushek and Woessmann 2008; 2016). 

One possible explanation for the success of East-Asian educational systems 

is the use of ‘Lesson study’ to support teachers’ professional development 

(Lewis and Tsuchida 1999; Stigler and Hiebert 1999).3 While details differ 

across countries, the common core of Lesson study entails a general school‐

based practice where teachers collaborate in learning cycles; plan and evaluate 

lessons together, and give each other feedback and critique; sometimes facili-

tated by outside experts (Chen and Zhang 2019; Rappleye and Komatsu 2017).4 

The Lesson study approach to teachers’ professional development has been im-

ported to schools in many countries around the world to improve students’ learn-

ing outcomes (Lewis and Lee 2017; Quaresma et al. 2018).5  

 
3 Other possible explanations are selection of teachers to the profession, school curriculum, work 

ethic and discipline, and out-of-school tuition (see for example Jerrim 2015).  

4 Lesson study is generally considered to originate from Japan, but similar improvement strate-

gies has also been developed in China, Singapore, Hong Kong and more recently in South Korea 

(Chen and Zhang 2019; Cheng and Yee 2012; Huang, Fang, and Chen 2017; Pang 2016).  

5 Lesson study communities are found in most European countries, the US and Canada, and in 

2006 the World Association of Lesson Studies was formed (Lewis and Lee 2017; Quaresma et 

al. 2018). Rappleye and Komatsu (2017) report that about 1,500 US schools have active Lesson 

study communities, and since 2010 the Florida Department of Education has adopted Lesson 

study as a state-wide vehicle for teacher development (Akiba and Wilkinson 2016).  
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But does Lesson study work? The empirical evidence is still scant and comes 

mainly from small-scale trials. A systematic review on the effectiveness of Les-

son study by Cheung and Wong (2014) is inconclusive due to remaining meth-

odological challenges. More recently, Murphy, Weinhardt, and Wyness (2021) 

find no significant improvement on test scores (mathematics, science, reading, 

spelling and grammar) from a randomized intervention (89 treated schools and 

92 controls) of a two-year Lesson study program for 4–6 graders in the UK. 

In this paper we study the effectiveness of the ‘Boost for Mathematics’: A 

one-year national in-service professional development program for mathematics 

teachers in Sweden, introduced in 2013 as a response to the falling mathematics 

performance of Swedish students in TIMSS 2007 and PISA 2009 (Utbild-

ningsdepartementet 2012). The program contains central elements of Lesson 

study. Teachers work collaboratively in learning cycles where they discuss a 

particular mathematical content in group, plan a lesson together, try out the 

planned lesson in their own classes, and then share their experiences in group. 

The teacher learning groups are supported by an external mathematics tutor, and 

the learning cycle is organized along educational modules with study material 

covering core mathematical areas (e.g. algebra, geometry and probability), 

where schools choose modules depending on their local needs (Skolverket 

2016a). The modules promote a more active instructional practices, where 

teachers challenge students, discuss problem-solving strategies in class, and use 

assessments to learn about teaching outcomes. During the program the teacher 

groups meet about once a week for an entire school year. A distinguishing fea-

ture of the Boost for Mathematics is that teachers self-assess their performance, 

rather than being evaluated in the classroom by colleagues as is the case in tra-

ditional Lesson study. 

In-service professional development programs can be an important policy 

tool as there is a large variation in the contribution of teachers to students’ learn-

ing outcomes (e.g. Chetty, Friedman, and Rockoff 2014a; 2014b; C. K. Jackson 

2018; Jacob and Lefgren 2008; Kane, Rockoff, and Staiger 2008; Rivkin, 
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Hanushek, and Kain 2005; Rockoff 2004; Rothstein 2010), and since teacher 

effectiveness improves with experience, also beyond the early parts of the career 

(Harris and Sass 2011; Papay and Kraft 2015; Wiswall 2013). This suggests that 

teacher skills are malleable through learning-by-doing. Teachers may advance 

their professional practice over time by improving how to give instruction, in-

teract with students, manage the classroom, and organize the curriculum. Ost 

(2014) finds that both general teaching skills and content specific skills improve 

with experience. Hence, there is scope for in-service training to enhance this 

learning-by-doing process. 

The Boost for Mathematics was organized by the Swedish National Agency 

for Education – by providing educational modules, training of tutors, and central 

funding – with an ambition that all mathematics teachers would participate in 

the training. The program was rolled out gradually across schools 2013/14–

2015/16 and 60 percent of compulsory school mathematics teachers had partic-

ipated by the end of the academic year 2015/16. The training spots (i.e., funding) 

were available to school districts in proportion to the number of mathematics 

teachers, and school districts had discretion over which and when schools par-

ticipated (Skolverket 2012). We exploit the staggered implementation across 

schools in a difference-in-differences strategy suggested by Sun and Abraham 

(2020) and Callaway and Sant’Anna (2020) to evaluate the impact of the Boost 

for Mathematics, by comparing the change in student performance in each wave 

of schools participating in the program to the change for schools that never par-

ticipated. We find no evidence that the intervention was targeted toward schools 

with declining (or increasing) student test scores, or that participation is related 

to changes in schools’ student composition, thus lending support for a causal 

interpretation of results. 
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We show that the Boost for Mathematics improves student performance on 

standardized tests in mathematics, in particular in primary school.6 On average, 

test scores increase by 2.6 percent of a standard deviation in treated schools. 

Student learning is boosted also in the longer run; at least 4–5 years after the 

intervention at the school. In fact, we find positive effects for students who had 

not yet started school when the program was implemented. However, the inter-

vention does not benefit students from disadvantaged backgrounds; we find no 

effect for students in the lowest quartile of predicted test scores, but positive 

effects for those in other quartiles. We also show that the program passes a cost-

benefit test. 

We use a uniquely collected teacher survey panel data to explore the under-

lying mechanisms of the Boost for Mathematics, to find that teachers in partic-

ipating schools receive more in-service training in the year of implementation. 

Participating teachers are also more satisfied with their work and believe they – 

and their colleagues – have improved their teaching practices. In participating 

schools, the Boost for Mathematics increases peer-to-peer interaction among 

teachers, but the effect peters out soon after the program has ended. Hence, we 

find no evidence of a long-lasting improvement of the collaborative culture in 

participating schools, as was intended. On the other hand, we find persistent 

changes in classroom practices. Consistent with the content of the educational 

modules, teachers in the program devote more time to discuss problem-solving 

strategies with students in class, and less time to let students solve standard 

problems.  

This paper makes a number of contributions to the literature. A first contri-

bution is that we – to the best of our knowledge – provide the first large-scale 

evaluation of Lesson study methodology, finding it to be an effective strategy 

to enhance student learning. We also show that it passes a cost-benefit test. 

 
6 Lindvall et al. (2021) find no significant difference in student performance for 208 teachers 

participating in the Boost for Mathematics compared to 145 untreated teachers, using TIMSS 

data for Sweden in 2015. In Appendix D, we re-analyze the Swedish TIMSS 2015 data. 
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A second contribution is that we study the impact of teacher in-service train-

ing in the longer run. Student performance in treated schools is found to be 

higher 4–5 years after the intervention has ended.7 This finding is corroborated 

by persistent effects of the program on teacher’s instructional practices.   

A third contribution is that we provide real world evidence from a national 

implementation of a teacher training program. Effects found in small trials may 

not always generalize as it can be difficult to change the general teaching culture 

by national policy, especially in a decentralized school system, see e.g. Kraft, 

Blazar, and Hogan (2018). While central government policies can be effective 

in bringing innovations to schools, they need to be adaptive to local needs, and 

to change teaching practices, to be effective, and the Boost for Mathematics 

aims to strike this balance.  

A fourth contribution is to use survey data to explicitly study how teachers 

respond to the program in terms of peer collaboration and classroom instruc-

tional practices, thus unveiling underlying mechanisms that are usually unob-

served. A fifth contribution is that we address the endogeneity in the delivery of 

in-service teacher training by exploiting the staggered implementation of the 

program across schools.  

Our paper relates closely to a growing literature on peer-to-peer learning 

which shows that teachers learn from their colleagues. As teachers typically do 

not interact with colleagues in the classroom, structured peer interaction for im-

proved planning and preparation can be an important tool for professional de-

velopment. Burgess, Rawal, and Taylor (2021) find a positive impact in a field 

experiment of 82 UK high schools on students’ mathematics and English exams 

from a structured teacher feedback program where teachers observe each other 

in the classroom and provide advice and share strategies for improvement. 

 
7 Earlier evaluations of in-service teacher training on student achievement have either been re-

stricted to the year(s) of implementation (Murphy, Weinhardt, and Wyness 2021; Burgess, 

Rawal, and Taylor 2021; Jacob and Lefgren 2004; Garet et al. 2010; 2011) or to the first year 

after the intervention (Papay et al. 2020a; Randel et al. 2016). 
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Similarly, Papay et al. (2020) provide experimental evidence on improved stu-

dent achievements in mathematics and reading from an intervention pairing 

low-skilled teachers to a higher skilled teacher in the same school, and instruct-

ing the pair to work together on improving teaching skills.8 Unlike these inter-

ventions, the Boost for Mathematics does not involve peer observation, with 

feedback and criticism of classroom practices. Instead, teachers self-assess their 

classroom performance as an input to teacher group discussions. 

The paper furthermore relates to teacher observation programs with feedback 

from external classroom observers. In a meta-study, Kraft, Blazar, and Hogan 

(2018) find limited evidence that coaching programs with feedback on teachers’ 

instructional practice improve students’ mathematics achievement. Using quasi-

experimental variation in the timing of exposure to inspections, both Taylor and 

Tyler (2012) and Briole and Maurin (2019) find that assessments from class-

room observations by external experts, where assessments can have conse-

quences for career advancement, have a positive impact on students’ mathemat-

ics outcomes also in a longer run; thus suggesting that teacher evaluation can be 

a tool for improving teacher skill and effort.9 A main difference to our context, 

however, is the role of the external experts. In the Boost for Mathematics, they 

coach teachers to improve their instruction practices through intrinsic motiva-

tion rather than through high stakes evaluations.  

Our paper also relates to Jackson and Makarin (2018) who provides experi-

mental evidence that high-quality online instructional material, available as a 

didactic support for mathematics teachers, improves students’ achievement. 

 
8 More informally, Jackson and Bruegmann (2009) find positive peer spillovers using variation 

generated by job-to-job transitions of high-quality teachers. The achievement of a teacher’s stu-

dents improves when having more effective colleagues, and the improvement persists over time. 

9 Sojourner, Mykerezi, and West (2014) find that tying teacher bonuses in Minnesota (Q-Comp) 

to multiple performance measures, including high stakes classroom observations, improved stu-

dent achievement, and Dee and Wyckoff (2015) find that students benefit from a program where 

teachers are rated by their performance, including detailed classroom observations.  
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More broadly the paper relates to the effectiveness of in-service professional 

development programs for teachers in general. Such programs are a prevalent 

feature in schools and vary in form and substance (Bill & Melinda Gates Foun-

dation 2015), but evidence is still sparse (Yoon et al. 2007; Kennedy 2016). The 

literature on teacher in-service training finds modest or no effects on students 

outcomes, in particular when implemented at scale (Angrist and Lavy 2001; Ja-

cob and Lefgren 2004; Garet et al. 2010; 2011; Harris and Sass 2011; Randel et 

al. 2011; 2016). For specific didactic interventions there is evidence for both 

positive (Machin and McNally 2005; 2008; Jerrim and Vignoles 2016; Cilliers 

et al. 2019) and limited (Machin, McNally, and Viarengo 2018; Dix, Hol-

lingsworth, and Carslake 2018) or even negative (Haeck, Lefebvre, and Merri-

gan 2014) impacts on student achievement.  

For in-service training to improve school quality and student achievement, 

programs must convey instructional innovation to schools, cater for local needs, 

and change teachers’ professional practice. Our results suggest that the Boost 

for Mathematics manages to do just that. 

The paper unfolds as follows. The next section describes the Boost for Math-

ematics and the context in which it was implemented, data, and descriptive sta-

tistics. Section   3 describes the empirical strategy. The main results on student 

performance in mathematics, validity checks and heterogeneous effects are pro-

vided in section 4 followed by results on teachers’ peer activities and classroom 

practices from survey data in section 5. Section 6 provides cost-benefit calcula-

tions, and the paper is concluded in section 7. 

2 Institutional setting and data 
From the mid 1990’s, and through to TIMSS 2007 and PISA 2009, the results 

of Swedish students, in particular in mathematics and science, were falling in 

international assessments both in absolute terms and relative to other countries 

(OECD 2014; Mullis et al. 2012). This led to a general concern about the 
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development in Swedish schools, resulting in the government introducing the 

Boost for Mathematics in 2013.10 

2.1 The Swedish school system 
The Swedish primary and secondary school system comprise three main com-

ponents: pre-school, compulsory school and upper-secondary school. At age 6, 

all children start a one-year preparatory pre-school class, which is followed by 

9 years of compulsory schooling (grades 1–9). Students can then apply for a 3-

year theoretical or vocational upper-secondary school program, which is re-

quired for post-secondary education.  

The compulsory school can be divided into three stages: lower and middle 

stages; grades 1–3 and 4–6 (primary school), and higher stage; grades 7–9 

(lower secondary school). In primary school, students typically have a class 

teacher who teaches most subjects; a feature that is most salient in the lowest 

stage. In the middle stage there is more variation across schools and the same 

teacher may not necessarily cover all core subjects (mathematics, Swedish and 

English). In lower secondary school, students have specialized subject teachers 

in each subject. There are national standardized tests at the end of each stage 

(grade 3, 6 and 9). While the tests in primary school (grade 3 and 6) are mainly 

used to monitor progression, the national tests in lower secondary school are 

high-stakes and influence the school leaving GPA at the end of grade 9, which 

determines the set of opportunities for upper secondary school. 

The school system is publicly financed and free from tuition. Municipalities 

are responsible for providing compulsory education, but there are also private 

voucher schools, following the same curriculum. Students are free to apply to 

any school – public or private – in the municipality. The allocation of students 

 
10 It also led to other policy initiatives during the same period: A merit-based ‘Career teacher 

promotion program’ in 2013 (Grönqvist, Hensvik, and Thoresson 2021), the ‘Boost for reading’ 

in 2015 and the ‘Teachers’ salary boost’ in 2017 In Table 3, column 3, we show that our main 

results are stable to any cross-contamination in the take-up of these other policies across schools. 
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to compulsory schools – the school form we study – in not based on academic 

merit. If a public school is oversubscribed, students are allocated based on prox-

imity as a main principle, and for voucher schools students are admitted mainly 

based on proximity and waiting lists (Skollag 2010). About 85 percent of com-

pulsory school students attend a public school (in one of 290 municipalities) and 

15 percent attend one of the more than 800 voucher schools (Skolverket 2020). 

2.2 The Boost for Mathematics 
The Boost for Mathematics is a one-year in-service professional development 

program in mathematics didactics for teachers in mathematics in Swedish com-

pulsory and upper-secondary schools. It was developed and organized by the 

Swedish National Agency for Education. The program is based on peer-to-peer 

learning among teachers with support from an external mathematics tutor, with 

the goal to provide teachers with methods and tools to develop their teaching 

and instill a collaborative learning culture in the school, in order to improve 

student’s proficiency in math. The program promotes more active instructional 

practices, where teachers engage students with challenging tasks, organize 

classroom discussions, and modify their instruction in response to students’ 

questions and thoughts (Lindvall et al. 2021). The in-service training takes place 

locally at the schools and is based on peer-to-peer discussions about teaching 

situations and mathematical contents. Teachers exchange good teaching prac-

tices, highlight their difficulties, critically examine their own instruction, and 

receive feedback from colleagues. 

2.2.1 Learning cycles 
The program centers on teacher learning groups which are supported by an ex-

ternal mathematics tutor, who is an experienced and skilled mathematics teacher 

with special mentoring training.11 Teachers work in learning cycles where they 

 
11 The appointment as mathematics tutor corresponds to 20 percent of full-time and entails re-

sponsibility for several teacher groups. Tutors receive 8–9 days of training at a teacher training 
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discuss a specific mathematical content, plan a lesson together, carry out the 

lesson in class, and then share their experiences in group. The learning cycles 

are organized along educational modules with tailored study material, such as 

scientific texts and videos. A module covers a specific mathematical content 

(such as algebra, geometry and problem solving) from different perspectives to 

provide teachers with tools for reflecting, planning, and carrying out teaching 

in different ways. All modules consist of 8 parts, highlighting different aspects, 

where teachers, in each part, work through a learning cycle of 4 steps as follows 

(see Appendix A for additional information on the content of the Boost for 

Mathematics): 

A. Individual preparation: Teachers prepare individually by studying the 

didactic support material for that specific part (45–60 minutes). 

B. Collaborative learning: Teachers meet in group to discuss the material 

that they have studied (step A) and plan a lesson together (90–120 

minutes). 

C. Classroom activity: Each teacher tries out the planned mathematics les-

son in their own classroom. 

D. Collegial follow-up: Teachers meet in group to discuss their lessons to 

reflect and learn what went well and what can be improved (45–60 

minutes). 

The collegial group discussions in steps B and D of the cycle are led by the tutor. 

In total, it takes a teacher 24–32 hours of learning activities, plus the regular 

classroom teaching activities, to work through a module. 

The intention of the Boost for Mathematics is for teacher groups to work 

intensively with two modules during a school year (about 60 hours), which 

 
college with emphasis on mentoring and group processes, and the content of the support mate-

rial. Principals at participating schools also receive 4–5 days of training on how to strengthen 

their pedagogical leadership, on the content of the program, and how to organize the training. 
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means that teachers have collegial learning group meetings every week during 

the year.12 

2.2.2 Assignment of treatment 
Due to the Swedish decentralized school system, the central government cannot 

make in-service training programs mandatory, but it can provide recommenda-

tions and financial support, which they did for the Boost for Mathematics. The 

program was introduced in the academic year 2013/14 and rolled out to schools 

over three years through government grants providing financial resources to 

participating school districts. The grant covered the cost of mathematics tutors 

(20 percent of full time) and provided co-financing for all participating teacher 

(about 18 hours).  

In each wave, the funds were restricted to one third of the mathematics teach-

ers in the school district. The districts could apply for their reserved funding and 

were responsible for appointing tutors and allocating the available slots to the 

schools (Skolverket 2012). In total, 89 percent of the public school districts, and 

28 percent of the private districts, decided to participate in the program. The 

main reasons for not taking part, as stated in interviews, were problems in adapt-

ing to the organizational model, problems for smaller school districts to partic-

ipate due to scale properties of the program, and that school districts already 

were working with teacher professional development in other ways (Skolverket 

2016a).  

In participating school districts, on average 80 percent of the schools are 

treated (82 percent for public and 71 percent for private districts). The majority 

of schools (94 percent) participated with all stages in the same year, and we 

therefore define treatment at the school level. The principals were responsible 

for organizing the training, e.g., forming the teacher groups and making sure 

that sufficient time was available for the training. By 2016, about two thirds of 

 
12 The training takes place during regular working time, and schools have to repay the govern-

ment grant if participating teachers must work overtime. 
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all compulsory schools, and 60 percent of all mathematics teachers had partici-

pated in the program. 

In sum, the set of participating schools is determined by decisions at two 

levels; school districts choosing to participate, and then choosing which schools 

in the district to implement the program (and in which wave). In Section 2.4 we 

describe participating and non-participating schools. 

2.3 Data 
To analyze the effects of the Boost for Mathematics we combine data from dif-

ferent administrative sources held by Statistics Sweden and the National Agency 

for Education. In addition, we have collected survey data from mathematics 

teachers for a sample of compulsory schools. The underlying population for the 

analysis is the panel of Swedish primary and lower secondary schools (grades 

1–9) for the years 2011–2019, and the students and mathematics teachers in 

these schools. 

2.3.1 Administrative data 
The school panel is based on information from the Swedish school registry list-

ing all schools with a unique school identifier. We also retrieve information on 

school size, school district, and organizational form (i.e., municipal or voucher 

school) from the school registry.  

To classify when (or if) a specific school participates in the Boost for Math-

ematics we first use information from the Swedish teacher registry on teachers’ 

subject of teaching to identify the population of teachers in mathematics in all 

schools. The teacher register covers all educational personnel in Swedish 

schools measured is collected as a part of the official school statistics. The 

teacher register is also used to retrieve information on teachers’ experience and 

certification. For each observed mathematics teacher, we then determine partic-

ipation in the program (and when they participated) by linking them to a register 

on government grant payments for participating teachers, provided by the Na-

tional Agency for Education. Using this data, we calculate the share of 
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mathematics teacher at each school that participate in the program. A school is 

defined as participating in the Boost for Mathematics a specific year, if at least 

50 percent of the mathematics teachers received the government grant and is 

regarded as not participating if no grant is received that year. If some, but less 

than half, of the teachers receive grants, we regard participation as undeter-

mined, and the school is dropped from the data.13  

To all schools, we link individual level information on student performance 

at the end of each stage of compulsory school, using registry data on test scores 

from national tests in mathematics (and Swedish).14 These exams are taken dur-

ing the spring semester in grades 3, 6, and 9. We standardize student test scores 

(mean 0 and standard deviation 1) by year in the full population of test-takers.15 

Using personal identifiers, we furthermore link each student to his or her 

parents using the population registry, and then to parents’ socioeconomic and 

demographic characteristics using information from administrative records. 

This data includes information on parents’ country of birth, level of education 

and income. To avoid that any of these variables are endogenously determined 

by the program (e.g., by parental responses) they are measured the year a child 

enters a specific stage (i.e., in grades 1, 4 or 7). We use predicted test scores as 

 
13 In most cases, the majority of mathematics teachers in the school participates in the training, 

but because of possible misclassification of teacher specialization or turnover, the share of par-

ticipating teachers may include measurement errors. Appendix Figure B1 shows the distribution 

of participating teachers in the schools in the three waves. We can determine treatment status 

for 81 percent of the schools, and thus exclude 19 percent of schools. Results are, however, 

insensitive to changes of the treatment status threshold, see Appendix Table B1.  

14 The exams are typically marked by the student’s own teacher, using centrally provided guide-

lines. In section 4.3 we provide evidence suggesting that the Boost for Mathematics is unlikely 

to affect teachers’ grading standards. 

15 Each centralized exam consists of several sub-tests which are graded separately. We stand-

ardize each sub-test by year in the population of test-takers, and take the average of all sub-tests, 

which we, again, standardize. If a student is absent on one sub-test, we take the average of the 

sub-tests where the student participates. 
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a composite measure of students’ demographic and socio-economic back-

ground.16 

2.3.2 Teacher survey data 
To gain information on professional development and teacher practices, we 

have collected yearly survey data (in collaboration with the Swedish National 

Agency for Education) from mathematics teachers for a sample of compulsory 

schools.  

In 2013 we randomly sampled 560 schools, stratified to have an equal repre-

sentation of all school stages, and we follow these schools through the years 

2013–2016.  In April each year we sent out a mail questionnaire to all mathe-

matics teachers in the selected schools according to the teacher registry. The 

response rate of the survey varies between 42–55 percent across the waves, but 

there are no systematic differences across participating and non-participating 

schools in observable characteristics of responding teachers (see Table C1 for 

details). The survey data does not include personal identifiers of the teachers, so 

we can only link the yearly survey information at the school level.  

From the teacher survey we retrieve information on different types of profes-

sional development practices as proof of treatment to check if the program af-

fects teachers’ in-service training. We additionally obtain information on 

teacher peer collaboration and classroom activities to assess how the program 

has changed teacher practices. The survey also provides assessments of own and 

colleagues’ teaching skills and job-satisfaction.  

 
16 Specifically, using data for students who took the test before the reform, we regress students’ 

test scores by grade on pre-determined student and parental characteristics and school fixed 

effects (R2 = 0.156), and use the estimated parameters to generate the predicted test score, sim-

ilar to (Chetty, Friedman, and Rockoff 2014a). The variables used in the predictions are gender, 

birth month, income of mother, income of father, education of mother, education of father, in-

dicators for whether the student and the parents are born in Sweden and indicators for having 

missing values on these variables.  
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2.4 Descriptive statistics 
In our analysis data, we observe about 1,3 million unique students in 3,800 

schools. The two first years of the Boost for Mathematics (academic years 

2013/14 and 2014/15) about 900 schools per year participate, while only 624 

schools participate the third year (2015/16). More than 1,300 schools did not 

participate in the program at all. 

Table 1. Average characteristics of participating and non-participating schools  

Column: (1) (2) (3) (4) 

 Wave 1 Wave 2 Wave 3  

Sample: (2013/14) (2014/15) (2015/16) Never 

Private school 0.0833 0.0417 0.0508 0.3530 

 (0.2763) (0.1920) (0.2196) (0.4779) 

Located in major city 0.3382 0.3339 0.3810 0.4537 

 (0.4731) (0.4716) (0.4856) (0.4979) 

School size 332 333 344 267 

 (185) (195) (198) (214) 

Share certified teachers 0.7074 0.7296 0.7292 0.6629 

 (0.2427) (0.2305) (0.2367) (0.3002) 

Teacher experience (years) 14.31 14.91 14.78 13.42 

 (5.48) (5.57) (5.59) (6.66) 

Share of participating teachers 0.8181 0.8454 0.8105 0 

 (0.1545) (0.1422) (0.1409) (0) 

Pre-reform test score 0.0119 0.0014 0.0046 -0.0085 

 (0.3318) (0.3250) (0.3698) (0.3861) 

Predicted test scores 0.0084 -0.0087 -0.0003 0.0001 

 (0.3265) (0.3209) (0.3418) (0.3418) 

Number of schools 959 886 624 1,331 

Number of students 691,298 660,665 481,410 451,022 

Note: The table shows student-weighted averages and standard deviations for schools partici-

pating in the Boost for Mathematics in different waves, and for schools that never participate. 

The teacher characteristics refer to mathematics teachers. All background variables are meas-

ured in the 2012/13 academic year. 

 

Table 1 shows that participating schools are relatively similar, across waves, in 

pre-reform mathematics test scores measured in the academic year 2012/13. 

Schools that never participate are, however, slightly weaker on average with 

about 1–2 percent of a standard deviation lower mathematics scores. There are 
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also small differences in the background of students, measured as predicted 

scores, across schools. 

Voucher schools are much less likely to participate in the Boost for Mathe-

matics than are other schools. Only 24 percent of voucher schools implemented 

the program, compared to 73 percent among public schools. There are also dif-

ferences in average teacher experience and certification rates between schools. 

Mathematics teachers in participating schools are more likely to be certified and 

have, on average, longer teaching experience (measured in 2012). Schools par-

ticipating in the Boost for Mathematics are also larger and less likely to be lo-

cated in a major city. In the next section we discuss our identification strategy 

to address these level differences between schools. 

3 Empirical strategy and identification 
The empirical challenge when evaluating the effectiveness of any in-service 

training program is to find a good estimate of the counterfactual outcome. We 

exploit the staggered implementation of the Boost for Mathematics across 

schools, and the fact that some schools never participated, to identify the effects 

of the intervention in a difference-in-differences design. 

An emerging literature stresses the potential identification problems in dif-

ference-in-differences models with staggered rollout of treatment, since earlier 

treated cohorts are then used as controls for later treated cohorts (Goodman-

Bacon 2018).17 If there are heterogeneous treatment effects across cohorts, ear-

lier treated cohorts are not accurate counterfactuals for later cohorts, and event 

study estimates will be biased (Sun and Abraham 2020). Therefore, we only use 

never-treated schools as controls and, thus, compare the change in outcomes for 

 
17 In addition, standard difference-in-differences models place more weight on cohorts in the 

middle of the panel, which can make it difficult to interpret the pooled treatment effects (de 

Chaisemartin and D’Haultfœuille 2020). This is, however, often  a minor concern, in particular 

in our setting with only three treated cohorts (Baker 2019). 
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schools implementing the boost for Mathematics to the corresponding change 

for schools that never participated. 

More specifically, for each implementation cohort g={2013, 2014, 2015} we 

retain only schools implementing the Boost for Mathematics that year and 

schools that never participate in the program. We then stack data for each cohort 

by event time and estimate separate effects by cohorts as suggested by Sun and 

Abraham (2020) and Callaway and Sant’Anna (2020). We estimate the follow-

ing dynamic event study model for individual i (student or teacher) in school s 

in calendar year t and implementation cohort g:  

 𝑦𝑖𝑠𝑡𝑔 =∑ ∑ 𝜃𝜏𝑔
𝜏≠−1𝑔

𝐷𝑠1[𝜏, 𝑔] + 𝛾𝑠𝑔 + 𝜆𝑣𝑡𝑔 + 𝜀𝑖𝑠𝑡𝑔 (1) 

where 𝑦𝑖𝑠𝑡𝑔 is the outcome of interest, e.g., student test scores. Event time, , 

refers to time in relation to when the school implemented the Boost for Mathe-

matics, and  = 0 represents the year of teacher training,   = 1 the first year after 

implementation, and so on. The effect of the program in event time  = {-6,…, 

5}, with  = -1 as reference period, is estimated as a weighted average of the 

cohort-specific treatment effects, 𝜃𝜏 = ∑ 𝑝𝜏𝑔𝜃𝜏𝑔𝑔 , where the weights, 𝑝𝜏𝑔, are 

the share of treated individuals in cohort g in event time , and 𝜃𝜏𝑔 are the cor-

responding treatment effects estimates. We obtain an estimate of the overall ef-

fect of the Boost for Mathematics by aggregating the effects for all years fol-

lowing (and including) program implementation, i.e., 𝜃 = ∑ ∑ 𝑝𝜏𝑔𝜃𝜏𝑔𝑔𝜏≥0 . 

Cluster-adjusted standard errors at the school level are in parentheses to account 

for arbitrary correlation in outcomes between individuals within schools and 

over time. 

We control for school-by-cohort fixed effects, 𝛾𝑠𝑔, to account for constant 

differences across schools (c.f. Table 1). In addition, the model includes cohort-

specific calendar time effects, 𝜆𝑣𝑡𝑔, to absorb any general time factors. We let 

the time effects differ between voucher and municipal schools v = {voucher, 

municipal}, since test scores have been shown to evolve differently in public 
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and private schools and voucher schools are less likely to participate in the pro-

gram.18 No other time varying controls are included in the main specification 

since they can endogenously be affected by the program.  

A possible concern with evaluating the reform in the Swedish context is that 

parents may endogenously (de)select schools participating in the Boost for 

Mathematics. For this reason, students are sampled in the beginning of the stage 

(grades 1/4/6) and assigned the treatment status of the school they are expected 

to attend in the end of the stage (grades 3/6/9); that is, students are given the 

treatment status of the school they should have attended, had they followed the 

normal route.19 This means that the earliest cohorts of students had already se-

lected schools before the program was implemented, while parents to students 

in later cohorts potentially could have observed schools’ treatment status at the 

time of school choice. In section 4.2, however, we show that student composi-

tion does not change differentially in treatment and control schools in response 

to the rollout of the program.  

As some students change schools, not all students will take the centralized 

exam at the expected school. The estimates therefore capture a reduced form 

effect of students’ expected exposure to the program. However, actual treatment 

corresponds to expected treatment for 84 percent of all students, which suggests 

 
18 Voucher schools tend to score higher on centralized exams in mathematics due to either a 

more selective student population, a more efficient teaching technology (Holmlund, Sjögren, 

and Öckert 2020), or more lenient grading practices (Tyrefors Hinnerich and Vlachos 2016; 

Hinnerich and Vlachos 2017). A possible diverging trend in mathematics scores for voucher 

schools can thus be due to voucher schools either becoming more selective in their student re-

cruitment, innovative in teaching or in inflating the mathematics scores. 

19 Since school choice is more pronounced in the higher stage, than in the lower and middle 

stages of comprehensive school (Holmlund, Sjögren, and Öckert 2020), we assign students to a 

higher stage school based on their school in grade 6. Hence, we assign students to their school 

in grade 1/4/6 for the lower/middle/higher stage. 
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that the reduced form estimate is a good approximation of the treatment effect 

of interest.20 

The identifying assumption for giving the difference-in-differences estimates 

a causal interpretation is that schools participating in the Boost for Mathematics 

would have had the same trend in outcomes, as schools that never participate, 

had the program not been implemented. Thus, while participating and non-par-

ticipating schools may differ in average characteristics, the program must not 

be targeted towards schools with declining (or increasing) student test scores, 

or with deteriorating (or improving) student composition. Although this as-

sumption cannot be tested formally, we show in section 4.1 that student test 

scores evolve similarly in participating and non-participating schools before the 

intervention. 

4 Impact on student performance 
We begin this section by presenting the main effects of the Boost for Mathemat-

ics on students’ mathematics test scores. This is followed by discussions of pos-

sible threats to identification and the reliability of test scores. We then present 

heterogeneous effects with respect to student, teacher, and school characteris-

tics. 

4.1 Main results  
The effect of the Boost for Mathematics on student test scores in mathematics 

is illustrated in Figure 1. Before the program is implemented, student perfor-

mance evolves similarly in treated and control schools. Thus, there is no ‘effect’ 

of schools’ future treatment status and the placebo estimates ( = -6, -5, -4, -3, 

-2) are all close to zero and not statistically significant.21 This indicates that the 

 
20 Appendix Table B2 presents the ‘first stage’ estimate, i.e., the effect of the treatment status of 

the school that students enter in a given stage (grades 1/4/6) on the treatment status of the school 

they attend at the end of the stage (grades 3/6/9). 

21 This is confirmed by an F-test (p-value=0.918) of the joint hypothesis that all are zero. 
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program has not been targeted towards schools with falling (or improving) test 

scores, which lends support to the identifying assumption of our model that the 

program implementation was unrelated to underlying trends in test scores.  

Figure 1. Effects of the Boost for Mathematics on test scores in mathematics  

 

Note: The figure displays reduced form effects of the Boost for Mathematics on standardized 

test scores in mathematics along with 95-percent confidence bands. Estimates in a slightly 

lighter shade (τ = -5 and 4) are based only on schools in the first or second wave of the inter-

vention and estimates in the lightest shade (τ = -6 and 5) only on schools in the first wave. The 

model includes school-by-cohort fixed effects and time-by-cohort fixed effects that vary by mu-

nicipal and voucher schools. Test scores are measured in the end of lower/middle/higher stage 

(grade 3/6/9). Students are sampled in the beginning of the lower/middle/higher stage (grades 

1/4/6) and assigned the treatment status of the school they are expected to attend in the end of 

the stage. Standard errors are clustered at the school level. 

 

Once the Boost for Mathematics is implemented, student performance in partic-

ipating schools increases (the estimates underlying Figure 1 are presented in the 
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first column of Appendix Table B3).22 Already when teachers undergo training 

( = 0), student test scores rise by approximately 0.012 SD, but this estimate 

does not reach statistical significance (p-value = 0.105).23 Student performance 

grow even further when teachers have completed the program; in the two years 

following implementation ( = 1 and 2) test scores improve with 0.025–0.035 

SD in participating schools. The boost in student performance persists also 3–4 

years after the program is introduced ( = 3 and 4), when new students have 

entered the stage. In the last follow-up period ( = 5), which we can only observe 

for the schools in the first wave, the point estimate is smaller and no longer 

statistically significant. Due to the smaller sample size, however, the confidence 

band is too wide to rule out either a large positive, or even negative, effect. To 

gain precision, we therefore pool information from adjacent years to evaluate 

the longer run effects of the intervention. 

The first column of Table 2 presents the impact of the Boost for Mathematics 

for different pairwise post-reform years. It shows that student performance is 

boosted in every period after program implementation. The effects are largest 

after 2–3 years, but the estimates for various post-reform years are not signifi-

cantly different. Importantly, test scores are higher in participating schools also 

4–5 years after the in-service training has ended. Thus, the Boost for Mathemat-

ics has long-lasting effects on student performance in mathematics. 

On average, test scores in participating schools rise by about 0.026 SD. Due 

to student mobility, however, not all students attend their expected school in the 

end of the stage, and the reduced form (intention-to-treat) estimates therefore 

understate the effect of the program. Since the probability that students receive 

 
22 The national exams are mandatory, but students may be exempted due to illnesses, cognitive 

disorders, or weak language skills (immigrants). However, Appendix Table B6 shows that the 

Boost for Mathematics does not affect students’ test-taking propensity. 

23 The remaining columns of Appendix 

Table B3 show that inference is robust to clustering standard errors at the school district level 

or at the school×stage level (instead of the school level). 
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the expected treatment is 84 percent (see Appendix Table B2), the inferred IV-

estimate of the program effect is 0.031 (0.026/0.84) SD.24 Thus, there is a mod-

erate but economically significant positive impact of the Boost for Mathematics 

on student learning in participating schools. 

Table 2. Effects of the Boost for Mathematics on test scores in mathematics, by stage 

Column: (1) (2) (3) (4) 
Grades: 3, 6 and 9 3 6 9 

 Panel A. Separately for different years 
0–1 years after implementation 0.0184** 0.0255* 0.0256** 0.0055 
 (0.0074) (0.0152) (0.0120) (0.0107) 
2–3 years after implementation 0.0347*** 0.0592*** 0.0270* 0.0095 
 (0.0102) (0.0192) (0.0163) (0.0161) 
4–5 years after implementation 0.0264** 0.0525** 0.0371* -0.0081 
 (0.0130) (0.0244) (0.0212) (0.0195) 
     
 Panel B. All years pooled 
All years  0.0263*** 0.0447*** 0.0286** 0.0044 
 (0.0085) (0.0165) (0.0140) (0.0123) 
     
School×Wave FE Yes Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes Yes 
Observations 2,874,158 1,053,814 967,565 852,779 

Note: The table shows reduced form effects of the Boost for Mathematics on standardized test 

scores in mathematics, divided by stage. All models include school-by-cohort fixed effects and 

time-by-cohort fixed effects that vary by municipal and voucher schools. The sample studied is 

indicated in the column heading. Test scores are measured in the end of lower/middle/higher 

stage (grade 3/6/9). Students are sampled in the beginning of the lower/middle/higher stage 

(grades 1/4/6) and assigned the treatment status of the school they are expected to attend in the 

end of the stage. Cluster-adjusted standard errors at the school level are in parentheses and 

*/**/*** refers to statistical significance at the 10/5/1 percent level. 

 

The remaining columns of Table 2 presents the effects of the Boost for Mathe-

matics separately by stage. 25 It shows that the program only stimulates student 

 
24 In addition to the assumption that treated schools would have followed the same trend in 

outcomes as other schools in absence of the reform, the IV interpretation rests on the assumption 

that expected treatment status influences students’ mathematics scores only through its effect 

on the probability to be exposed to the program by the end of the stage.  

25 Appendix Table B4 presents the yearly effects of the Boost for Mathematics separately by 

stage. 
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learning in primary school (grade 3 and 6), and that there is no significant impact 

in lower-secondary school. On average, the in-service training improves student 

performance in primary school by 0.035 SD (not shown in table) which is sig-

nificantly higher than in lower-secondary school (p-value for test of difference 

is 0.083). This suggests that subject-specific in-service training may be more 

efficient for teachers with general teacher education, as is often the case for pri-

mary school class teachers. 

The positive effect of the Boost for Mathematics in primary school persists 

in the longer run, and student test scores are higher in treated schools also 4–5 

years after implementation. In particular, students entering the lower stage in 

the end of the follow-up period had not yet started school at the time of imple-

mentation, which suggests that the program changed teachers’ instructional 

practices more permanently. Thus, the Boost for Mathematics successfully 

boosts mathematics performance, both for students who attended the school dur-

ing the implementation, and for later incoming cohorts.   

4.2 Exogeneity of treatment 
A causal interpretation of the estimates crucially depends on the assumption that 

the rollout of the Boost for Mathematics is exogenous, i.e., that treated schools 

would have followed the same trend in outcomes, as the control schools, in ab-

sence of the program. As noted in Figure 1, student performance in participating 

and non-participating schools progress in a comparable way prior to the pro-

gram. This is consistent with the assumption that schools in the Boost for Math-

ematics would have exhibited a similar pattern in outcomes as other schools, in 

the case the program had not been implemented. 

To provide further support for the identifying assumption, we study changes 

in student composition between treated and control schools. We use predicted 

test scores – where students’ pre-determined characteristics are summarized and 

weighted by their importance for mathematics performance – as outcome to de-

scribe how any changes in student composition is expected to translate into 



 25 

outcome differences between participating and non-participating schools in the 

follow-up period in absence of the reform.  

Table 3. Specification tests  

Column: (1) (2) (3) 
 
Outcome: 

Predicted  
test scores 

 
Test scores 

 
Test scores 

 Panel A. Separately for different years 
0–1 years after implementation 0.0007 0.0176** 0.0175** 
 (0.0014) (0.0072) (0.0074) 
2–3 years after implementation 0.0017 0.0321*** 0.0323*** 
 (0.0021) (0.0097) (0.0103) 
4–5 years after implementation 0.0040 0.0212* 0.0246* 
 (0.0031) (0.0126) (0.0133) 
    
 Panel B. All years pooled 
All years  0.0018 0.0239*** 0.0246*** 
 (0.0018) (0.0081) (0.0086) 
    
School×Wave FE Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes 
Student controls No Yes No 
School intervention controls No No Yes 
Observations 2,874,158 2,874,158 2,874,158 

Note: The table shows reduced form effects of the Boost for Mathematics on predicted test 

scores and test scores in mathematics. All models include school-by-cohort fixed effects and 

time-by-cohort fixed effects that vary by municipal and voucher schools. The outcome variable 

is indicated in the column heading. The student controls are gender, birth month, income of 

mother, income of father, education of mother, education of father, immigrant status and indi-

cators for having missing values. The school intervention controls are dummy variables for the 

schools’ participation in the Boost for Reading, Career teachers, Teachers’ salary boost and the 

reintroduction of the Boost for Mathematics in 2017. Outcomes are measured in the end of 

lower/middle/higher stage (grade 3/6/9). Students are sampled in the beginning of the 

lower/middle/higher stage (grades 1/4/6) and assigned the treatment status of the school they 

are expected to attend in the end of the stage. Cluster-adjusted standard errors at the school level 

are in parentheses and */**/*** refers to statistical significance at the 10/5/1 percent level.  

 

The first column of Table 3 presents the change in predicted test scores in 

schools introducing the Boost for Mathematics compared to schools that never 
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participate.26 Any ‘effect’ of participation status on predicted test scores could 

be an indication of an endogenous roll-out of the program, or – for students that 

enter schools in the end of the follow-up period – parents’ school choice re-

sponses. It is therefore reassuring that the point estimates are all close to zero 

and not statistically significant. This is, again, consistent with the assumption 

that student performance would have evolved similarly in the treated and control 

schools in absence of the reform. Not surprisingly, adding controls for pre-de-

termined student characteristics has very limited impact on the estimated test 

score effects, see column 2. 

As discussed in section 2.1, the Boost for Mathematics was the first in a se-

ries of national school initiatives to improve student performance. Although the 

implementation of other school development programs was not contingent on 

participation in the Boost for Mathematics, it opens up the concern that the es-

timated treatment effects may partly reflect the impact of other interventions. 

As a final specification check, we therefore add controls for three national 

school development programs implemented during the period studied.27 Column 

3 in Table 3 shows that the estimated program effects are only marginally af-

fected when adding these school-level controls, suggesting that the estimated 

effects of the Boost for Mathematics do not to pick up the impact of other con-

current reforms. 

4.3 Reliability of test scores 
In Swedish schools, mathematics teachers grade their own students’ national 

exams. A relevant question is therefore whether the estimated effects of the 

Boost for Mathematics on test scores reflect changes in teachers’ grading stand-

ards rather than improved student performance. In this section, we provide three 

 
26 Appendix Table B5 presents the corresponding specification tests separately for every post-

reform year. 

27 The initiatives are the Boost for reading, Career teachers, Teachers’ salary boost and the re-

introduction of the Boost for Mathematics in 2017. 
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pieces of evidence suggesting that the estimated effects are likely to reflect im-

proved student learning rather than changes in teachers’ grading leniency (for 

more details see Appendix D). 

First, there is little room for teachers’ subjective judgement of students’ an-

swers to questions that can be characterized as being either ‘right’ or ‘wrong’, 

as is often the case in mathematics. This is confirmed by the re-assessments of 

national exams conducted by the Swedish Schools Inspectorate for a sample of 

schools every year (see e.g. Skolinspektionen 2021), which shows that the 

teachers’ judgement of their own students’ mathematics performance does not 

differ much from that of external examiners.  

Second, using data from the TIMSS 2015 survey for Sweden, we compare 

the effect of teachers (intraclass correlations) for student performance in math-

ematics on the national tests (internally graded) and on the TIMSS test (exter-

nally graded). The teacher effects are of the same order of magnitude for both 

tests (0.267 for the national tests and 0.249 for TIMSS), which suggests that 

there is little room for teachers’ subjective grading in mathematics. 

Third, as a final check for any impact of the Boost for Mathematics on teach-

ers’ grading standards, we exploit information on program participation ob-

tained from the Swedish version of the TIMSS 2015 school questionnaire. The 

estimated difference in student performance between schools participating in 

the Boost for Mathematics, and schools not participating, is very similar if we 

use the internally graded national exams or the externally graded TIMSS test 

(0.047 for the national tests and 0.045 for TIMSS). This indicates that the pro-

gram had very minor, if any, effects on teachers’ grading standards in mathe-

matics. 

4.4 Heterogeneous effects 
Having established that the Boost for Mathematics improves performance for 

the average student, has a longer run impact at schools, and assessed threats 

against identification, we next turn to heterogeneous effects of the program by 
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student, teacher, and school characteristics. To gain precision, we restrict atten-

tion to the overall effect of the program in the years following implementation. 

First, we analyze heterogeneities effects of the program by student back-

ground. In Table 4 we estimate the effects separately for students in each quar-

tile of the predicted test score distribution. The effect of exposure to the Boost 

for Mathematics is concentrated to the three highest quartiles. For students in 

the lower tail of the distribution, however, we find no effect (p-value of differ-

ence between the lowest and the other quartiles is 0.122).28 This may partly be 

explained by immigrant students being overrepresented in the lowest quartile of 

predicted test scores, and that they generally gain less from the program (see 

Appendix Table B7).29 However, even if we restrict the analysis to natives, the 

program fails to help students in the lowest quartile (see Appendix Table B8). 

This suggests that the Boost for Mathematics is less effective for weaker stu-

dents in general, and not only for those with lower language proficiency. The 

more active teaching practices promoted by the program may thus not be well 

suited for low-performing students. Hence, the intervention has contributed to a 

widening of the differences in mathematics performance across students of dif-

ferent backgrounds, and potentially reinforced inequalities in the educational 

system.  

Second, we investigate if the effectiveness of the program is related to the 

teachers’ formal qualifications. Since we cannot directly link teachers to their 

students, we instead divide schools by the median share of certified and experi-

enced mathematics teachers, respectively. Overall, we find quite small differ-

ences in the effects (see Appendix Table B9). Students in schools with more 

certified teacher do not seem to gain more (or less) from the program. While we 

find that effects are slightly larger in schools with a higher share of experienced 

teachers, but this difference is not significant. Thus, we fail to find important 

 
28 The program does not affect the probability to take the test for students in different quantiles 

of the predicted test score distribution (see Appendix Table B6). 

29 We find no significant heterogeneity by the gender of students (see Appendix Table B7). 
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heterogeneities of the program for different types of teachers, possibly because 

we cannot link teachers to their students at the individual level. 

Table 4. Effects of the Boost for Mathematics on test scores, by quartiles of students’ 
predicted test scores 

Column: (1) (2) (3) (4) (5)  
Sample: All P0–P25 P25–P50 P50–P75 P75–P100 

      
All years pooled  0.0263*** 0.0084 0.0290*** 0.0366*** 0.0207** 
 (0.0085) (0.0150) (0.0105) (0.0105) (0.0101) 
      
School×Wave FE Yes Yes Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes Yes Yes 
Observations 2,874,158 699,144 720,617 725,428 728,969 

Note: The table shows reduced form effects of the Boost for Mathematics on standardized test 

scores in mathematics, divided by quartiles of students’ predicted test scores. All models include 

school-by-cohort fixed effects and time-by-cohort fixed effects that vary by municipal and 

voucher schools. The sample studied is indicated in the column heading. Test scores are meas-

ured in the end of lower/middle/higher stage (grade 3/6/9). Students are sampled in the begin-

ning of the lower/middle/higher stage (grades 1/4/6) and assigned the treatment status of the 

school they are expected to attend in the end of the stage. Cluster-adjusted standard errors at the 

school level are in parentheses and */**/*** refers to statistical significance at the 10/5/1 percent 

level. 

 

Third, we assess heterogeneities by characteristics of the schools and the envi-

ronment in which they operate (see Appendix Table B10). Effects are greater in 

large schools (p-value for difference is 0.172) and greater in schools located in 

larger metropolitan areas (Stockholm, Gothenburg, Malmö) compared to 

schools in medium sized cities and rural areas (p-value for difference is 0.034). 

These results echo the findings in Murphy, Weinhardt, and Wyness (2021) who 

report that Lesson study was more effective in larger schools. However, when 

we study the effects of the Boost for Mathematics by school size and region 

simultaneously, we find that the heterogeneous effects are driven mainly by ge-

ographical area rather than school size.30 The greater effects in metropolitan 

 
30 The average difference in effects of the Boost for Mathematics between large and small 

schools in the same areas (metropolitan or other) is 0.0166 (standard error 0.0186), while the 
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areas could potentially be explained by these larger school markets being more 

competitive. 

Finally, we study spillover effects from the Boost for Mathematics on test 

scores in Swedish (see Appendix Table B11). We find that the program im-

proves student performance also in Swedish, in particular in primary school, 

although the magnitude of the effect is smaller. This suggesting that the program 

may affect the instructional practices of class teachers in all subjects. Important 

spillover effects from reading to mathematics are also found by Machin and 

McNally (2008) in evaluating the ‘Literacy Hour’. 

5 Impact on teaching practices 
In order for in-service training programs to have an impact on student perfor-

mance it must change instructional practices in the classroom. In this section, 

we use teacher survey information to analyze how the Boost for Mathematics 

has affected teachers’ peer collaboration and classroom teaching practices, and, 

thus, explore some of the underlying mechanisms behind the effects of the pro-

gram. To study the dynamics of the reform, we present effect by year after pro-

gram implementation. Teachers are here assigned to the school where they work 

(i.e., the school for which they answered the survey) so results should be inter-

preted as average treatment effects on the treated. The panel with teacher survey 

data spans four years (2013–2016) and we, therefore, only estimate effects for 

τ = 0, 1, 2 and let all pre-reform years define the baseline. 

To validate that teachers in treated schools in fact receive additional in-ser-

vice training as proof of treatment, we first estimate the effects of the program 

on teachers’ training activities. Table 5 shows that mathematics teachers receive 

significantly more in-service training when the program is implemented (τ = 0), 

than teachers in other schools. The training covers core mathematics, 

 
average difference in effects between schools of the same size (small or large) in metropolitan 

and other areas is 0.0356 (standard error 0.0187). 
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mathematics didactics, and assessment of students’ mathematics skills. During 

the implementation phase, teachers also more often report to participate in peer 

collaboration and coaching activities, which are two core elements of the Boost 

for Mathematics. The effects on these training activities add up to 65 hours, 

which can be compared to the expected time-use of two training modules being 

about 60 hours. However, the categories in the survey question are not mutually 

exclusive, so the net additional hours of training during the implementation year 

is likely lower. 

Table 5. Effects of the Boost for Mathematics on teachers’ training activities (hours 
per school year)  

Column: (1) (2) (3) (4) (5) 
 
Outcome: 

Mathe-
matics 

 
Didactics 

 
Coaching 

Collabo- 
ration 

Assess-
ment 

      
Implementation year 14.82*** 23.33*** 10.95*** 12.89*** 3.13*** 
 (0.95) (1.09) (0.77) (1.05) (1.04) 
1 year after implementation 3.46*** 4.92*** 1.65** 2.61* -2.02 
 (1.16) (1.43) (0.65) (1.44) (1.30) 
2 years after implementation  1.58 1.08 0.04 1.86 -2.42 
 (1.53) (1.87) (0.82) (1.94) (1.77) 
      
School×Wave FE Yes Yes Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes Yes Yes 
F-test for θ0=θ1=θ2=0  0.0000 0.0000 0.0000 0.0000 0.0000 
Observations 8,376 8,376 8,376 8,376 8,376 
Pre-reform mean 4.32 5.53 1.88 13.20 10.81 

Note: The table shows effects of the Boost for Mathematics on teachers’ self-reported training 

activities. All models include school-by-cohort fixed effects and time-by-cohort fixed effects 

that vary by municipal and voucher schools. The outcome variable indicated in the column 

heading is the answer to the survey question: “This academic year, how many hours have you 

participated in in-service training or other activities that involved; (1) subject knowledge in 

mathematics, (2) didactics of mathematics, (3) support by a coach, (4) peer collaboration, or (5) 

student assessment?”. Answers are reported as hours per school year. The table reports the p-

value of the F-test for the hypothesis that all model parameters are zero. Cluster-adjusted stand-

ard errors at the school level are in parentheses and */**/*** refers to statistical significance at 

the 10/5/1 percent level.  

 

The intensive training phase of the Boost for Mathematics lasts only a year. 

Even if there are some additional training activities also in the year after 
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implementation (τ = 1), the initial effect tapers off quickly. Two years after the 

program was introduced, teachers in participating schools are not more (or less) 

likely to undertake training than teachers in other schools (the effect in τ = 0 is 

significantly different from the overall effect in τ = 1–2 for all outcomes). Thus, 

the Boost for Mathematics has no long-lasting effects on formal in-service train-

ing activities, which is not surprising given that the government grant only cov-

ered one year of professional development. 

An intermediate goal of the program was to instill a collaborative learning 

culture among teachers, where they continuously learn from each other. There-

fore, we have asked teachers to report on their peer collaboration activities. Ta-

ble 6 shows that teachers are more likely to work together in many different 

ways during the year of implementation (τ = 0). Teachers more often plan and 

follow-up their mathematics teaching together with colleagues, and they also 

discuss didactics more often. These activities are likely to reflect the weekly 

teacher group meetings as part of the learning cycles. There is no effect on peer 

observation in the classroom, which is to be expected since the program focuses 

on self-assessment of classroom performance.  

The higher prevalence of peer collaboration is, however, not maintained over 

time; after the implementation phase (τ = 1, 2) teachers in participating schools 

are not more likely to collaborate with colleagues than teachers not exposed to 

the program. We only find a lingering impact on didactic discussions between 

teachers (the effect in τ = 0 is significantly different from the effect in τ = 1–2 

for collegial planning, following-up of lectures and discussions). The results 

thus suggest that organized peer collaboration needs to be actively promoted by 

school management to be maintained over time, at least in a Swedish context.31  

 
31 Appendix Table C2, shows that teachers continue to find inspiration from colleagues in im-

proving their teaching also in the year following implementation, potentially through maintained 

discussions about teaching methods. However, we find no effect for later years. This corrobo-

rates the finding that much of the collegial interactions that were spurred in the initial phase of 

the Boost for Mathematics do not persist. 
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Table 6. Effects of the Boost for Mathematics on teacher peer collaboration activities 
(frequency per term)  

Column: (1) (2) (3) (4) (5) 
 
Outcome: 

Plan 
teaching 

Follow-up 
teaching 

Assess 
students 

Discuss  
didactics 

Classroom 
visits 

      
Implementation year 3.55*** 2.64*** 0.76 4.55*** -0.02 
 (0.66) (0.61) (0.58) (0.60) (0.42) 
1 year after implementation 1.30 0.75 0.61 1.54* 0.02 
 (0.92) (0.81) (0.77) (0.81) (0.61) 
2 years after implementation  1.67 1.55 1.59 1.76 -0.38 
 (1.20) (1.17) (1.08) (1.09) (0.83) 
      
School×Wave FE Yes Yes Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes Yes Yes 
F-test for θ0=θ1=θ2=0 0.0000 0.0000 0.3935 0.0000 0.9175 
Observations 8,370 8,359 8,347 8,384 8,381 
Pre-reform mean 10.28 8.92 9.59 12.27 2.57 

Note: The table shows effects of the Boost for Mathematics on teachers’ self-reported peer col-

laboration activities. All models include school-by-cohort fixed effects and time-by-cohort fixed 

effects that vary by municipal and voucher schools. The outcome variable indicated in the col-

umn heading is the answer to the survey question: “How often do you, together with another 

mathematics teacher; (1) plan teaching, (2) follow up on teaching, (3) follow up students’ 

knowledge, (4) discuss instructional practices, or (5) visit each other’s lessons to exchange ex-

periences?”. Answers are reported as frequency per term. The table reports the p-value of the F-

test for the hypothesis that all model parameters are zero. Cluster-adjusted standard errors at the 

school level are in parentheses and */**/*** refers to statistical significance at the 10/5/1 percent 

level.  

 

In order for the Boost for Mathematics to influence students’ mathematics per-

formance, the program must change teachers’ classroom practices. In Table 7 

we find that teachers in the program on average spend more time in the class-

room discussing problem-solving strategies with the students as well as organ-

izing other types of teaching activities. They also allocate less time in class for 

students to work standard problems (alone or in groups), which is otherwise a 

common instructional practice in Swedish schools (Mullis, Martin, and Foy 

2008). This is in line with the program’s stronger focus on active instructional 

practices. There is no impact on the time teachers spend lecturing on mathemat-

ical material, or on time assigned for tests and homework quizzes.  
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Table 7. Effects of the Boost for Mathematics on teachers’ classroom practices (share 
of lecture time)  

Column: (1) (2) (3) (4) (5) 
 
 
 
Outcome: 

 
 

Teacher  
lectures 

Teacher 
and  

students  
discuss 

 
Students 

solve  
problems 

 
 

Students 
take tests 

 
 

Other  
activities 

      
Implementation year 0.30 1.91** -3.32*** -0.38 1.49** 
 (0.55) (0.75) (0.96) (0.31) (0.60) 
1 year after implementation 0.23 2.69** -4.05*** -0.31 1.44* 
 (0.70) (1.02) (1.24) (0.43) (0.87) 
2 years after implementation  0.47 1.86 -3.35** -0.77 1.78 
 (1.02) (1.44) (1.59) (0.56) (1.09) 
      
School×Wave FE Yes Yes Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes Yes Yes 
F-test for θ0=θ1=θ2=0  0.9522 0.0476 0.0040 0.4267 0.1039 
Observations 7,819 7,819 7,819 7,819 7,819 
Pre-reform mean 18.22 18.81 50.03 5.42 7.51 

Note: The table shows effects of the Boost for Mathematics on teachers’ self-reported classroom 

practices. All models include school-by-cohort fixed effects and time-by-cohort fixed effects 

that vary by municipal and voucher schools. The outcome variable indicated in the column 

heading is the answer to the survey question: “In a typical week, what percentage of the lesson 

time in mathematics do students spend on each of the following activities; (1) listening to lec-

ture-style presentations, (2) discussing problem-solving strategies together with the teacher, (3) 

working problems on their own or in group, (4) taking tests or quizzes, or (5) other student 

activities?” Answers are reported as percent of time. The table reports the p-value of the F-test 

for the hypothesis that all model parameters are zero. Cluster-adjusted standard errors at the 

school level are in parentheses and */**/*** refers to statistical significance at the 10/5/1 percent 

level. 

 

Unlike the training activities, and most of the teacher peer group interactions, 

the Boost for Mathematics has persistent effects on instructional practices. The 

initial reduction in the share of lesson time that students work with standard 

problems is maintained throughout the period. There are also remaining positive 

effects on the discussion of problem-solving strategies and other activities. The 

program, thus, seems to be successful in implementing more active teacher prac-

tices more permanently (we do not find significant differences between the ef-

fects in τ = 0 and in τ = 1–2 for any of the outcomes). This may explain why the 
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Bost for Mathematics is able to improve student test scores also in a longer-run, 

even though the increased formal training and collegial learning activities dur-

ing the initial phase of the program fade out. 

The main obstacle to the adoption of Lesson study in American schools, as 

argued by Rappleye and Komatsu (2017), is for teachers to take criticism from 

their peers, which, disrupts or even breaks the learning cycles. To avoid this 

problem, the Boost for Mathematics instead relies on self-assessments, and, in 

a national follow-up of the intervention (Ramböll Management Consulting 

2014), a majority of the participating teachers characterized the atmosphere of 

the peer group meetings as open-minded, and also reported to have received 

constructive feedback from their colleagues. The teachers were also very satis-

fied with the program in general, as it made them feel more self-confident and 

engaged in their instruction of mathematics.  

Consistent with the national follow-up of the Boost for Mathematics, we find 

that teachers exposed to the program are boosted in their confidence, and to a 

larger extent believe they have sufficient competence in mathematics instruction 

and in assessing the results of their teaching (see Table C3). They also believe 

that their colleagues have improved in subject knowledge in mathematics and 

in their didactic competences (see Appendix Table C4). Overall, teachers seem 

to be positive to the program, which indicates that it was well-designed to meet 

the needs at the local level. 

6 Costs and benefits of the program 
The results show that the Boost for Mathematics changed teacher practices and 

improved student performance. For the program to be a worthwhile investment, 

however, the benefits must outweigh the costs. In this section, we therefore dis-

cuss the societal costs and benefits of the intervention.32 

 
32 See Appendix E for a detailed discussion of the cost-benefit calculations.  
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One important cost of the Boost for mathematics is the time teachers devote 

to training, since this is expected to crowd out other out-of-class teacher activi-

ties. In the cost-benefit calculations, we assume that half of these activities are 

directly (or indirectly) related to students’ human capital production and, thus, 

captured by the estimated test score effects. The other half of the reduced teacher 

activities is instead assumed to produce other societal goods, which we value by 

the market price of teacher time. For the external tutor, we on the other hand 

account for the full opportunity cost of the time the tutors devote to the program, 

since it is unlikely to affect student performance in treated schools. The program 

also had some direct costs, such as expenditures for training of tutors and prin-

cipals, setting up the web-portal, and administration. Taken together, we esti-

mate the total costs of the program at about €51.2 million, or €80 per student on 

average. 

The major benefit of the Boost for mathematics is the students’ improved 

mathematics skills. We translate the short-run learning effects to permanent 

earnings gains using auxiliary data on mathematics performance in grade 6 and 

life-cycle earnings for a sample of individuals born 1953, and a sample of twins 

born 1953–82. When we control for differences in both observed and unob-

served family background, and adjust for measurement error in observed test 

scores, we find that 1 SD better mathematics skills is associated with about 9 

percent higher life-time earnings. Based on this estimate, we translate the effects 

of the Boost for Mathematics on performance to life-cycle earnings gains and 

multiply by the number of students to arrive at an estimated benefit of the pro-

gram. This back-on-the-envelope calculation yields a benefit of about €1,395 

million, or € 2,158 per student on average.  

The benefit-to-cost ratio for the Boost for Mathematics is about 27, meaning 

that the program generates €27 in savings for every €1 spent. It should be 

stressed, however, that the estimated societal benefits and costs are uncertain, 

and the effectiveness of the program may change under alternative assumptions. 

But even if we double the costs and cut the benefits in half, we arrive at a benefit-
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to-cost ratio of more than 6. Thus, also under more restrictive assumptions, the 

Boost for Mathematics appears to be a profitable investment to society. 

7 Conclusion 
The challenge for teacher professional development programs to successfully 

enhance student performance, is to influence the interaction between students 

and teachers in the classroom. Successful small-scale trials may not be general-

izable to other settings, and it can be difficult to change the teachers’ profes-

sional practice by national policy, especially in a decentralized school system. 

For a national policy to successfully bring new innovations to schools, it must 

be relevant and adaptive to local needs and motivate teachers to alter their class-

room practices. Our results suggest that the Boost for Mathematics manages to 

do just this. 

In 2013 the Swedish government introduced the Boost for Mathematics—a 

one-year in-service training program for mathematics teachers in compulsory 

and upper-secondary school—as a response to the deteriorating results of Swe-

dish students in TIMMS 2007 and PISA 2009. The program centers on teacher 

learning groups supported by a mathematics tutor, in which teachers work in 

learning cycles. Based on educational modules, with tailored study material, 

teachers exchange good practices, highlight their difficulties, critically examine 

their own teaching, and receive feedback from colleagues. 

We find that the program improved student performance in mathematics, in 

particular in primary school. Test scores for the average compulsory school stu-

dent increased by 2.6 percent of a standard deviation in treated schools during 

the follow-up period. This indicates that the intervention helps teachers imple-

ment more active and effective classroom practices. Importantly, the impact of 

the program persists also in the longer run, and performance is enhanced also 

for students who had not yet entered the school when the program was intro-

duced. This suggests that teachers maintain their new instructional practices, 

something that we also confirm using teacher survey data. However, the effect 
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sizes are too small to explain the substantial improvement of Swedish students 

in mathematics (and in other subjects) in PISA 2015 and TIMSS 2015.33 

The positive effect of the program is concentrated to students in the three top 

quartiles of predicted mathematics test scores. For the weakest students in the 

lowest quartile we find no effect. Possibly, the active instructional practices rec-

ommended in the program, such as providing challenging tasks and orchestrat-

ing group discussions, may have been too advanced for low-performing stu-

dents. Even if mathematics performance for the average student is boosted by 

the program, there is a risk that the weakest students are left behind, with re-

duced equality of opportunity as a result. In addition, the larger effects of the 

program in primary school suggests that there is an important scope for improv-

ing the mathematics instruction of class teachers, who have a more general 

teacher training than the mathematics subject teachers in lower-secondary 

school.  

We find that it is possible to change teacher behavior in the classroom 

through national policies in a decentralized schooling system. The program led 

to lasting changes in classroom practices. Participating teachers devote more 

time in class to discuss problem-solving strategies together with students, and 

less time for students to work standard problems. Participating teachers believe 

they have improved their instructional practices in mathematics, and also that 

their colleagues have become more skilled. The program also led to an increased 

peer-to-peer interaction between teachers, but this largely petered out after the 

program ended, suggesting that peer learning needs to be actively promoted by 

school management for a collaborative learning culture to be sustained over 

time.  

The Boost for Mathematics contains central elements of the Lesson study 

methodology. A key difference, however, is that the Boost for Mathematics 

 
33 The program may explain about 10–15 percent of the overall improvement among Swedish 

students in TIMSS and PISA. 
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aims to facilitate information flows between peers focusing on intrinsic motiva-

tion where teachers self-assess their classroom performance, rather than on peer 

observation, with feedback and criticism on classroom practices from col-

leagues. This is potentially a success factor; Rappleye and Komatsu (2017) ar-

gues that an obstacle in introducing Lesson study in the US is an inability of 

teachers to take criticism from their peers.  

We show that the Boost for Mathematics passes a cost-benefit test. Even 

though the impact on student performance is moderate, the cost of the interven-

tion is even smaller. We estimate that the program generates €27 in return for 

every €1 invested. 

Our results is consistent with recent experimental evidence on the effects of 

Lesson study on student performance in mathematics. Murphy, Weinhardt, and 

Wyness (2021) evaluates a teacher peer-to-peer observation and feedback pro-

gram in 89 English primary schools and find that test scores in mathematics 

improves by 0.033 (standard error 0.042) standard deviations. Similarly, Bur-

gess, Rawal, and Taylor (2021) report that a teacher peer evaluation program in 

41 English upper secondary schools boosts overall test scores, while the impact 

on mathematics achievement is only 0.044 (standard error 0.031) standard de-

viations and not statistically significant. We evaluate a Lesson study program at 

scale, 2,469 Swedish compulsory schools, and find it to have significant and 

persistent effects on student learning of about the same magnitude as in earlier 

papers. In fact, our larger sample size enables us to find significant effects of 

the Lesson study on test scores in mathematics, even though the boost in per-

formance is moderate.  

More generally, we conclude that we can learn from other school systems, 

and that educational strategies of Asian countries can be successfully modified 

and adapted to Western contexts by national policy. 
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For online publication 

Appendix 

A. Content of the Boost for Mathematics 
The Boost for Mathematics is based on educational modules with didactic sup-

port material (available online) covering different mathematical content. For 

each stage of compulsory school and upper secondary school there are separate 

modules, which are adapted to the didactic challenges at the specific level of 

schooling. Compulsory school has 10 different educational modules at each 

stage covering different mathematical themes; see Figure A1 for a full list of 

modules. All modules address the theme from the didactic perspectives: forma-

tive assessment or assessment for learning; competencies in the Swedish curric-

ulum; classroom norms and socio-mathematical norms; interaction in the class-

room (for details see Lindvall et al. 2021). There can also be additional didactic 

perspectives in the modules e.g., ICT, a historical perspective, or variation the-

ory of learning. 

The support material (e.g., texts, articles, films, and mathematics problems) 

in the modules is based on courses and syllabi, research on learning and teaching 

mathematics, and analyses of Swedish students’ performance in national and 

international assessments. To ensure the quality and relevance of the didactic 

support material, each module is developed by two universities or teacher train-

ing colleges in collaboration, where the content is assessed by independent re-

searchers in a peer review process. Focus groups of teachers have also been 

involved in this process. All modules consist of 8 parts, with each working 

through a learning cycle of 4 steps; see Figure A2 for a typology.  

The set-up of the program is based on the local needs of the school and it is 

the principal together with the tutor and teacher group – and in collaboration 

with the school district – that decides on which two modules to work with. The 

local principal is responsible for organizing the teacher groups and allocating 

time for training activities within the regular working hours.  
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Figure A1. Content of modules 

 

Source: (Skolverket 2018) 
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Figure A2. Illustration of the learning cycle in the module 

 

 

Source: (Skolverket 2018)  
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B. Additional results 
 

Figure B1. Distribution of the share of participating teachers in schools  

 

Note: The figure shows the distribution of schools with different share of mathematics teachers 

that receive the government grant for participating in the Boost for Mathematics. 
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Table B1. Effects of the Boost for Mathematics on mathematics test scores. Alterna-
tive treatment definitions 

Column: (1) (2) (3) 
Treatment cutoff: 0.50 0.20 0.80 

    
All years pooled 0.0263*** 0.0248*** 0.0245** 
 (0.0085) (0.0084) (0.0096) 
    
School×Wave FE Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes 
Observations 2,874,158 3,259,047 2,253,493 

Note: The table shows reduced form effects of the Boost for Mathematics on standardized test 

scores in mathematics for different definitions of schools’ treatment status. The treatment cutoff 

values indicated in the column heading is the lowest share of mathematics teachers participating 

in the program required for the school to be defined as treated. All models include school-by-

cohort fixed effects and time-by-cohort fixed effects that vary by municipal and voucher 

schools. Test scores are measured in the end of lower/middle/higher stage (grade 3/6/9). Stu-

dents are sampled in the beginning of the lower/middle/higher stage (grades 1/4/6) and assigned 

the treatment status of the school they are expected to attend in the end of the stage. Cluster-

adjusted standard errors at the school level are in parentheses and */**/*** refers to statistical 

significance at the 10/5/1 percent level. 
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Table B2. Effects of the Boost for Mathematics on actual exposure to the program 
(first stage) 

Column: (1) (2) (3) (4) 
Grades: 3, 6 and 9 3 6 9 

     
All years pooled 0.8444*** 0.9012*** 0.8395*** 0.7697*** 
 (0.0039) (0.0043) (0.0061) (0.0077) 
     
School×Wave FE Yes Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes Yes 
Observations 2,874,158 1,053,814 967,565 852,779 

Note: The table shows reduced form effects of the student’s expected exposure to the Boost for 

Mathematics on actual exposure. The outcome variable is years of exposure to the program in 

the school the student attends in the end of lower/middle/higher stage (grade 3/6/9). Students 

are sampled in the beginning of the lower/middle/higher stage (grades 1/4/6) and assigned the 

years of exposure to the program in the school they are expected to attend in the end of the stage. 

All models include school-by-cohort fixed effects and time-by-cohort fixed effects that vary by 

municipal and voucher schools. The sample studied is indicated in the column heading. Cluster-

adjusted standard errors at the school level are in parentheses and */**/*** refers to statistical 

significance at the 10/5/1 percent level. 
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Table B3. Effects of the Boost for Mathematics on test scores in mathematics. Alter-
native levels of cluster-adjusted standard errors.  

Column: (1) (2) (3) 

 Panel A. Separately for different years 
Implementation year 0.0117 0.0117 0.0117 
 0.0073 (0.0072) (0.0075) 
1 year after implementation 0.0249*** 0.0249*** 0.0249*** 
 (0.0089) (0.0084) (0.0090) 
2 years after implementation  0.0343*** 0.0343*** 0.0343*** 
 (0.0103) (0.0115) (0.0105) 
3 years after implementation  0.0352*** 0.0352*** 0.0352*** 
 (0.0113) (0.0130) (0.0113) 
4 years after implementation  0.0322** 0.0322** 0.0322** 
 (0.0137) (0.0148) (0.0134) 
5 years after implementation  0.0167 0.0167 0.0167 
 (0.0162) (0.0174) (0.0165) 
    
 Panel B. All years pooled 
All years  0.0263*** 0.0263*** 0.0263*** 
 (0.0085) (0.0092) (0.0086) 
    
School×Wave FE Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes 
    
 
Cluster level 

 
School 

School  
district 

School × 
stage 

Observations 2,874,158 2,874,158 2,874,158 

Note: The table shows reduced form effects of the Boost for Mathematics on test scores in 

mathematics using cluster-adjusted standard errors at different levels. All models include 

school-by-cohort fixed effects and time-by-cohort fixed effects that are allowed to vary by mu-

nicipal and voucher schools. Test scores are measured in the end of lower/middle/higher stage 

(grade 3/6/9). Students are sampled in the beginning of the lower/middle/higher stage (grades 

1/4/6) and assigned the treatment status of the school they are expected to attend in the end of 

the stage. */**/*** refers to statistical significance at the 10/5/1 percent level. 
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Table B4. Effects of the Boost for Mathematics on test scores in mathematics, by 
stage 

Column: (1) (2) (3) (4) 
Grades: 3, 6 and 9 3 6 9 

     
Implementation year 0.0117 0.0104 0.0185 0.0069 
 0.0073 (0.0153) (0.0117) (0.0105) 
1 year after implementation 0.0249*** 0.0403** 0.0325** 0.0041 
 (0.0089) (0.0177) (0.0146) (0.0129) 
2 years after implementation 0.0343*** 0.0603*** 0.0225 0.0175 
 (0.0103) (0.0197) (0.0168) (0.0173) 
3 years after implementation 0.0352*** 0.0582*** 0.0318* 0.0002 
 (0.0113) (0.0208) (0.0174) (0.0190) 
4 years after implementation 0.0322** 0.0497** 0.0416** 0.0144 
 (0.0137) (0.0244) (0.0207) (0.0255) 
5 years after implementation 0.0167 0.0583* 0.0282 -0.0286 
 (0.0162) (0.0316) (0.0280) (0.0241) 
     
School×Wave FE Yes Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes Yes 
Observations 2,874,158 1,053,814 967,565 852,779 

Note: The table shows reduced form effects of the Boost for Mathematics on standardized test 

scores in mathematics, by stage. All models include school-by-cohort fixed effects and time-

by-cohort fixed effects that vary by municipal and voucher schools. The sample studied is indi-

cated in the column heading. Test scores are measured in the end of lower/middle/higher stage 

(grade 3/6/9). Students are sampled in the beginning of the lower/middle/higher stage (grades 

1/4/6) and assigned the treatment status of the school they are expected to attend in the end of 

the stage. Cluster-adjusted standard errors at the school level are in parentheses and */**/*** 

refers to statistical significance at the 10/5/1 percent level.
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Table B5 Specification tests  

Column: (1) (2) (3) 
 
Outcome: 

Predicted test 
scores 

 
Test scores 

 
Test scores 

  
Implementation year 0.0019 0.0101 0.0110 
 (0.0014) (0.0071) (0.0073) 
1 year after implementation -0.0005 0.0250*** 0.0239*** 
 (0.0018) (0.0086) (0.0089) 
2 years after implementation  0.0010 0.0321*** 0.0319*** 
 (0.0020) (0.0099) (0.0104) 
3 years after implementation  0.0024 0.0322*** 0.0327*** 
 (0.0024) (0.0108) (0.0115) 
4 years after implementation  0.0036 0.0267** 0.0300** 
 (0.0031) (0.0132) (0.0139) 
5 years after implementation  0.0048 0.0120 0.0155 
 (0.0041) (0.0158) (0.0165) 
    
School×Wave FE Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes 
Student controls No Yes No 
School intervention controls No No Yes 
Observations 2,874,158 2,874,158 2,874,158 

Note: The table shows reduced form effects of the Boost for Mathematics on predicted test 

scores and test scores in mathematics. All models include school-by-cohort fixed effects and 

time-by-cohort fixed effects that vary by municipal and voucher schools. The outcome variable 

is indicated in the column heading. The student controls are gender, birth month, income of 

mother, income of father, education of mother, education of father, immigrant status and indi-

cators for having missing values. The school intervention controls are dummy variables for the 

schools’ participation in the Boost for Reading, Career teachers, Teachers’ salary boost and the 

reintroduction of the Boost for Mathematics in 2017. Outcomes are measured in the end of 

lower/middle/higher stage (grade 3/6/9). Students are sampled in the beginning of the 

lower/middle/higher stage (grades 1/4/6) and assigned the treatment status of the school they 

are expected to attend in the end of the stage. Cluster-adjusted standard errors at the school level 

are in parentheses and */**/*** refers to statistical significance at the 10/5/1 percent level.  
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Table B6. Effects of the Boost for Mathematics on test-taking, by quartile of predicted 
test scores 

Column: (1) (2) (3) (4) (5) 
Sample: All P0–P25 P25–P50 P50–P75 P75–P100 

      
All years pooled 0.0011 0.0028 0.0009 0.0032 -0.0063 
 (0.0050) (0.0060) (0.0057) (0.0055) (0.0062) 
      
School×Wave FE Yes Yes Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes Yes Yes 
Observations 3,079,940 783,804 765,007 762,572 768,557 
Mean of outcome 0.9332 0.8920 0.9420 0.9513 0.9485 

Note: The table shows reduced form effects of the Boost for Mathematics on the probability to 

take the standardized test in mathematics, divided by quartile of students’ predicted test scores. 

All models include school-by-cohort fixed effects and time-by-cohort fixed effects that are al-

lowed to vary by municipal and voucher schools. The sample studied is indicated in the column 

heading. The outcome is measured in the end of lower/middle/higher stage (grade 3/6/9). Stu-

dents are sampled in the beginning of the lower/middle/higher stage (grades 1/4/6) and assigned 

the treatment status of the school they are expected to attend in the end of the stage. Cluster-

adjusted standard errors at the school level are in parentheses and */**/*** refers to statistical 

significance at the 10/5/1 percent level. 
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Table B7. Effects of the Boost for Mathematics on test scores in mathematics, by im-
migration status and gender 

Column: (1) (2) (3) (4) 
Sample: Native Immigrant Girls Boys 

     
All years pooled 0.0276*** 0.0096 0.0324*** 0.0208** 
 (0.0085) (0.0212) (0.0093) (0.0101) 
     
School×Wave FE Yes Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes Yes 
Observations 2,657,401 543,227 1,405,750 1,468,408 

Note: The table shows reduced form effects of the Boost for Mathematics on standardized test 

scores in mathematics, divided by immigration status and gender. All models include school-

by-cohort fixed effects and time-by-cohort fixed effects that are allowed to vary by municipal 

and voucher schools. The sample studied is indicated in the column heading. Test scores are 

measured in the end of lower/middle/higher stage (grade 3/6/9). Students are sampled in the 

beginning of the lower/middle/higher stage (grades 1/4/6) and assigned the treatment status of 

the school they are expected to attend in the end of the stage. Cluster-adjusted standard errors 

at the school level are in parentheses and */**/*** refers to statistical significance at the 10/5/1 

percent level. 
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Table B8. Effects of the Boost for Mathematics on test scores in mathematics for na-
tives, by quartile of predicted test scores 

Column: (1) (2) (3) (4) (5) 
Sample: All P0–P25 P25–P50 P50–P75 P75–P100 

      
All years pooled 0.0276*** 0.0080 0.0300*** 0.0372*** 0.0211** 
 (0.0085) (0.0160) (0.0108) (0.0106) (0.0102) 
      
School×Wave FE Yes Yes Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes Yes Yes 
Observations 2,657,401 562,095 687,497 699,246 708,563 

Note: The table shows reduced form effects of the Boost for Mathematics on standardized test 

scores in mathematics for natives, divided by quartile of students’ predicted test scores. The 

quartiles are defined in the full population (natives and immigrants). All models include school-

by-cohort fixed effects and time-by-cohort fixed effects that are allowed to vary by municipal 

and voucher schools. The sample studied is indicated in the column heading. Test scores are 

measured in the end of lower/middle/higher stage (grade 3/6/9). Students are sampled in the 

beginning of the lower/middle/higher stage (grades 1/4/6) and assigned the treatment status of 

the school they are expected to attend in the end of the stage. Cluster-adjusted standard errors 

at the school level are in parentheses and */**/*** refers to statistical significance at the 10/5/1 

percent level. 
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Table B9. Effects of the Boost for Mathematics on test scores in mathematics, by 
teacher characteristics 

Column: (1) (2) (3) (4) 
Characteristic: Certified Experienced 
Sample: High share Low share High share Low share 

     
All years pooled 0.0270** 0.0294** 0.0316*** 0.0248* 
 (0.0119) (0.0135) (0.0118) (0.0137) 
     
School×Wave FE Yes Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes Yes 
Observations 1,283,925 1,381,908 1,289,374 1,376,459 

Note: The table shows reduced form effects of the Boost for Mathematics on standardized test 

scores in mathematics, divided by the schools’ average teacher characteristics. All models in-

clude school-by-cohort fixed effects and time-by-cohort fixed effects that are allowed to vary 

by municipal and voucher schools. The sample studied is indicated in the column heading. Test 

scores are measured in the end of lower/middle/higher stage (grade 3/6/9). Students are sampled 

in the beginning of the lower/middle/higher stage (grades 1/4/6) and assigned the treatment sta-

tus of the school they are expected to attend in the end of the stage. Cluster-adjusted standard 

errors at the school level are in parentheses and */**/*** refers to statistical significance at the 

10/5/1 percent level. 
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Table B10. Effects of the Boost for Mathematics on test scores in mathematics, by 
school characteristics 

Column: (1) (2) (3) (4) 
Characteristic: School size School market 
Sample: Small Big Big city Smaller city 

     
All years pooled 0.0164 0.0415*** 0.0508*** 0.0124 
 (0.0112) (0.0143) (0.0141) (0.0104) 
     
School×Wave FE Yes Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes Yes 
Observations 1,477,846 1,271,349 1,121,352 1,752,806 

Note: The table shows reduced form effects of the Boost for Mathematics on standardized test 

scores in mathematics, divided by school characteristics. All models include school-by-cohort 

fixed effects and time-by-cohort fixed effects that are allowed to vary by municipal and voucher 

schools. The sample restriction is indicated in the column heading. Test scores are measured in 

the end of lower/middle/higher stage (grade 3/6/9). Students are sampled in the beginning of the 

lower/middle/higher stage (grades 1/4/6) and assigned the treatment status of the school they 

are expected to attend in the end of the stage. Cluster-adjusted standard errors at the school level 

are in parentheses and */**/*** refers to statistical significance at the 10/5/1 percent level. 
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Table B11. Effects of the Boost for Mathematics on test scores in Swedish, by stage 

Column: (1) (2) (3) (4) 
Grades: 3, 6 and 9 3 6 9 

     
All years pooled 0.0188** 0.0236** 0.0153 0.0207 
 (0.0077) (0.0118) (0.0136) (0.0130) 
     
School×Wave FE Yes Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes Yes 
Observations 2,923,080 1,054,511 983,587 884,982 

Note: The table shows reduced form effects of the Boost for Mathematics on standardized test 

scores in Swedish, divided by stage. All models include school-by-cohort fixed effects and time-

by-cohort fixed effects that are allowed to vary by municipal and voucher schools. The sample 

studied is indicated in the column heading. Test scores Outcomes are measured in the end of 

lower/middle/higher stage (grade 3/6/9). Students are sampled in the beginning of the 

lower/middle/higher stage (grades 1/4/6) and assigned the treatment status of the school they 

are expected to attend in the end of the stage. Cluster-adjusted standard errors at the school level 

are in parentheses and */**/*** refers to statistical significance at the 10/5/1 percent level. 
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C. Additional teacher survey results  
Table C1. Effects of the Boost for Mathematics on pre-determined characteristics 
among teachers who responded to the survey  

Column: (1) (2) (3) (4) 
 
 
Outcome: 

 
Years of  

experience 

Hours of  
teaching per 

week 

 
Teacher  
diploma 

University  
semesters in 
mathematics 

 Panel A. Separately for different years 
Implementation year 0.86 0.02 0.01 0.01 
 (0.58) (0.21) (0.01) (0.07) 
1 year after implementation -0.52 0.16 0.00 -0.02 
 (0.79) (0.26) (0.02) (0.10) 
2 years after implementation  -0.27 0.11 -0.01 -0.06 
 1.07 (0.36) (0.03) (0.15) 
     
 Panel B. All years pooled 
All years  0.18 0.08 0.003 -0.01 
 (0.67) (0.22) (0.015) (0.08) 
     
School×Wave FE Yes Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes Yes 
Observations 8,363 8,166 8,385 8,314 
Mean of dependent var 15.26 5.60 0.95 1.76 

Note: The table shows effects of the Boost for Mathematics on pre-determined characteristics 

among teachers who responded to the survey. All models include school-by-cohort fixed effects 

and time-by-cohort fixed effects that vary by municipal and voucher schools. Cluster-adjusted 

standard errors at the school level are in parentheses and */**/*** refers to statistical signifi-

cance at the 10/5/1 percent level.  
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Table C2. Effects of the Boost for Mathematics on teachers’ sources of inspiration for 
improving their instruction  

Column: (1) (2) (3) (4) (5) 
 
 
 
Outcome: 

 
School  

manage-
ment 

 
 
 

Colleagues 

 
Educa-

tional web- 
platforms 

 
 
 

Literature 

Seminars 
and  

confer-
ences 

      
Implementation year 0.38 4.00*** 0.93 2.08*** 1.98*** 
 (0.28) (0.57) (0.58) (0.54) (0.34) 
1 year after implementation 0.01 2.41*** 1.09 0.90 0.07 
 (0.37) (0.81) (0.78) (0.70) (0.41) 
2 years after implementation  0.25 1.69 1.68 0.13 0.45 
 (0.49) (1.19) (1.10) (0.98) (0.50) 
      
School×Wave FE Yes Yes Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes Yes Yes 
F-test for θ0=θ1=θ2=0  0.3348 0.0000 0.4013 0.0000 0.0000 
Observations 8,089 8,315 8,250 8,295 8,260 
Pre-reform mean 1.66 13.64 9.11 7.83 2.38 

Note: The table shows effects of the Boost for Mathematics on teachers’ self-reported sources 

of inspiration for improving their instruction. All models include school-by-cohort fixed effects 

and time-by-cohort fixed effects that vary by municipal and voucher schools. The outcome var-

iable indicated in the column heading is the answer to the survey question: “How often do you 

get inspiration and knowledge to improve your instruction from; (1) the school management, 

(2), colleagues, (3) educational web-platforms, (4) literature (e.g. books and research papers), 

or (5) seminars and conferences?” Answers are reported as: “At least once a week” (25 times 

per semester); “At least once a month” (12); “At least once per semester” (3); “More 

rarely/never” (0). The table reports the p-value of the F-test for the hypothesis that all model 

parameters are zero. Cluster-adjusted standard errors at the school level are in parentheses and 

*/**/*** refers to statistical significance at the 10/5/1 percent level. 
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Table C3. Effects of the Boost for Mathematics on teachers’ self-assessment of their 
knowledge and competences    

Column: (1) (2) (3) 
 
 
Outcome: 

Subject 
knowledge  

in Mathematics 

 
Mathematics  

didactics 

Assessing  
the results  
of teaching 

    
Implementation year 0.13** 0.21*** 0.21*** 
 (0.06) (0.06) (0.05) 
1 year after implementation 0.13* 0.06 0.15** 
 (0.08) (0.08) (0.07) 
2 years after implementation  0.22** 0.11 0.24** 
 (0.11) (0.11) (0.09) 
    
School×Wave FE Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes 
F-test for θ0=θ1=θ2=0  0.1235 0.0003 0.0010 
Observations 8,393 8,374 8,365 

Note: The table shows effects of the Boost for Mathematics on teachers’ self-assessment of their 

knowledge and competences. All models include school-by-cohort fixed effects and time-by-

cohort fixed effects that vary by municipal and voucher schools. The outcome variable indicated 

in the column heading is the answer to the survey question: “To what extent do you think you 

have sufficient knowledge and competence in; (1) mathematics, (2) methodology and didactics 

of mathematics, or (3) following up the results of your mathematics teaching?” Answers are 

reported as: “To a very high degree” (5); “To a high degree” (4); “To neither a high nor a low 

degree” (3); “To a low degree” (1); “To a very low degree” (1). The outcome variable has been 

standardized. The table reports the p-value of the F-test for the hypothesis that all model param-

eters are zero. Cluster-adjusted standard errors at the school level are in parentheses and 

*/**/*** refers to statistical significance at the 10/5/1 percent level. 
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Table C4. Effects of the Boost for Mathematics on teachers’ opinion of their school    

Column: (1) (2) (3) 
 
 
 
Outcome: 

 
Principals’  

pedagogical  
leadership 

Colleagues’  
subject 

knowledge in  
Mathematics 

Colleagues’ 
knowledge in  
didactics of  

Mathematics  

    
Implementation year 0.01 0.12* 0.19*** 
 (0.08) (0.07) (0.07) 
1 year after implementation -0.05 0.07 0.20** 
 (0.13) (0.09) (0.09) 
2 years after implementation  -0.02 0.15 0.22* 
 (0.16) (0.15) (0.13) 
    
School×Wave FE Yes Yes Yes 
Year×Private×Wave FE Yes Yes Yes 
F-test for θ0=θ1=θ2=0  0.8113 0.2765 0.0401 
Observations 8,076 8,023 7,894 

Note: The table shows effects of the Boost for Mathematics on teachers’ self-reported opinion 

of their school. All models include school-by-cohort fixed effects and time-by-cohort fixed ef-

fects that vary by municipal and voucher schools.  The outcome variable indicated in the column 

heading is the answer to the survey question: “How do you think the following is at your school; 

(1) the principal's pedagogical leadership, (2) the mathematics teachers' subject knowledge in 

mathematics, and (3) the mathematics teachers' knowledge of methodology and didactics in 

mathematics?” Answers are reported as: “Very good” (5); “Good” (4); “Neither good nor bad” 

(3); “Bad” (2); “Very bad” (1). The outcome variable has been standardized. The table reports 

the p-value of the F-test for the hypothesis that all model parameters are zero. Cluster-adjusted 

standard errors at the school level are in parentheses and */**/*** refers to statistical signifi-

cance at the 10/5/1 percent level. 
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D. Reliability of test scores 
In Swedish schools, mathematics teachers grade their own students’ national 

exams. A relevant question is therefore whether the estimated effects of the 

Boost for Mathematics on test scores reflect changes in teachers’ grading stand-

ards rather than improved student performance. Even though the Swedish Na-

tional Agency for Education provides detailed guidelines on how to assess dif-

ferent answers, and promotes co-grading, it is still possible that participating 

teachers adopt less (or more) stringent grading standards.34 In this section, we 

provide three pieces of evidence suggesting that the estimated effects are likely 

to reflect improved student performance rather than changes in teachers’ grad-

ing standards. 

First, there is little room for teachers’ subjective judgement of students’ an-

swers to questions that can be characterized as being either ‘right’ or ‘wrong’, 

as is often the case in mathematics. This is confirmed by the re-assessments of 

national exams conducted by the Swedish Schools Inspectorate for a sample of 

schools every year (see e.g. Skolinspektionen 2021). Teachers are often found 

to be more lenient when judging their own students than are the external graders, 

but the magnitudes differ considerably across subjects. In Swedish, the devia-

tion in test scores between the school teacher and the external examiner is on 

average more than 20 percent of a standard deviation (of the externally graded 

test score). The corresponding number for the national exams in mathematics is 

about 5 percent of a standard deviation (Skolinspektionen 2012). Thus, the 

teachers’ judgement of their own students’ mathematics performance does not 

differ much from that of external examiners. 

Second, to further investigate the subjectiveness of teachers’ assessment, we 

make use of data from TIMSS, which is an international assessment of student 

performance in mathematics and science in grades 4 and 8, conducted by the 

 
34 To the extent that the program helps teachers to make more reliable (less noisy) assessments 

of student performance, this would not bias the estimates (but rather make them more precise).  
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International Association for the Evaluation of Educational Achievement (IEA). 

We have access to the TIMSS 2015 survey for Sweden, matched to the students’ 

national exams in grades 3, 6 and 9. This enables us to compare the effect of 

teachers (intraclass correlations) for student performance in mathematics on the 

national tests (internally graded) and on the TIMSS test (externally graded). We 

find that the teacher effects are of the same order of magnitude for both tests; 

0.267 (0.013) for the national tests and 0.249 (0.013) for TIMSS, which, again, 

suggests that there is little room for teachers’ subjective grading in mathematics. 

Third, as a final check for any impact of the Boost for Mathematics on teach-

ers’ grading standards, we exploit information on program participation ob-

tained from the Swedish version of the TIMSS 2015 school questionnaire. The 

schools were asked to state the share of mathematics teachers who participated 

in the Boost for mathematics (in the 2013/14 or in the 2014/15 school years). 

Similar to our main analysis, we define schools where at least half of the teach-

ers participate in the program as treated, and schools with no participating teach-

ers as untreated. We can, thus, compare the difference in student performance 

in mathematics between participating and non-participating schools using both 

the internally graded national exams (in grades 3 and 9) and the externally 

graded TIMSS test (in grades 4 and 8).35  

Appendix Table D1, column 1, shows that students in schools participating 

in the Boost for Mathematics perform on average about 0.05 SD better on the 

national tests in mathematics than students in schools that do not participate. 

However, the difference is not significant. In column 2, we attempt to adjust for 

some of the selection to the program by adding pre-determined student charac-

teristics, which reduces the differences between schools slightly. In the last two 

columns of Appendix Table D1, we repeat the same exercise using the exter-

nally graded TIMSS test. Column 3 reveals that students in treated schools score 

 
35 Since TIMSS 2015 is a cross-sectional data set we are unable to control for fixed differences 

between schools, and the difference in performance between treated and untreated schools may 

therefore not be given a causal interpretation. 
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on average about 0.05 SD higher than other students on the TIMSS test (not 

significant). Again, adding pre-determined student characteristics reduces the 

estimates somewhat.36 Thus, the estimated difference in student performance 

between schools participating in the Boost for Mathematics, and schools not 

participating, is very similar if we use the internally graded national exams or 

the externally graded TIMSS test, which indicates that the program had very 

minor, if any, effects on teachers’ grading standards in mathematics. 

Table D1. Descriptive differences in student performance in mathematics between 
schools participating in the Boost for Mathematics and schools that do not, using data 
on national tests and the TIMSS test 

Column: (1) (2) (3) (4) 
Outcome: 
Grades: 

Test scores 
3 and 9 

Test scores 
3 and 9 

TIMSS test 
4 and 8 

TIMSS test 
4 and 8 

     
All years pooled  0.047 0.037 0.045 0.026 
 (0.068) (0.058) (0.063) (0.041) 
     
Student controls No Yes No Yes 
Number of students 7,142 7,142 7,581 7,581 
Number of schools 270 270 270 270 

Note: The table shows differences in student performance in mathematics for schools partici-

pating in the Boost for Mathematics and schools that do not participate, using data on national 

tests (grades 3 and 9) and the TIMSS 2015 test (grades 4 and 8), respectively. The data have 

been provided by the National Agency of Education. Schools are defined as being treated if at 

least half of the mathematics teachers in the school participate in the program, and untreated if 

no teacher participate. All stages have been pooled and the models include a dummy variable 

for grade level. The student controls consist of dummy variables for month of birth, gender, 

first- and second-generation immigrant, age at immigration, and mother’s and father’s highest 

educational level. The outcome variable studied is indicated in the column heading. Cluster-

adjusted standard errors at the school level are in parentheses and */**/*** refers to statistical 

significance at the 10/5/1 percent level. 

 

  

 
36 This result is consistent with Lindvall et al. (2021) that also use data from TIMSS 2015. They 

do not find any significant performance differences between students taught by teachers partic-

ipating in the Boost for Mathematics and other students. 
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E. Cost and benefit calculations 
The evaluation of the Boost for Mathematics captures the short-run effects on 

mathematics skills. To inform policy about the efficiency of the program, how-

ever, it is necessary to also take the costs and long-run benefits of the interven-

tion into account. In this section, we attempt to attach a monetary value to the 

societal costs and benefits of the program compared to the situation had it not 

been introduced.  

 

Costs 

During the implementation phase of the Boost for Mathematics, participating 

teachers devote about 60 hours of their time to the learning cycles. The training 

is required to take place during regular working hours, and is, thus, expected to 

crowd out other out-of-class teacher activities. We lack time-use data for par-

ticipating teachers but assume that half of their non-teaching activities – such as 

preparation, interaction with students and parents, and other types of profes-

sional development – are directly (or indirectly) related to students’ human cap-

ital production, whereas the other half – such as school management, admin-

istration, and extracurricular activities – produce other outputs valuable to soci-

ety.  

To the extent that the program infringes on out-of-class activities that matter 

for skill formation, this will be captured by the estimated test score effects. This 

is, however, not the case for other types of teacher activities, and we therefore 

value the lost production of other societal goods by the market price of teacher 

time. The gross hourly wage (including payroll taxes) for participating teachers 

is €28.6 (in 2020 prices). Since we assume that half of the 60 training hours 

crowd out production of other societal goods, we estimate the cost of training at 

€858 per teacher (€28.6×60×0.50). In all, 23,209 teachers participated in the 

program in the schools covered by the evaluation, and the total cost for all teach-

ers is, thus, about €19.9 million (€858 ×23,209). 
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The external tutors are expected to spend 20 percent of their time to prepare 

and coach teachers, which corresponds to about 400 hour per school year. We 

take the full opportunity cost of the time the external tutors spend on the pro-

gram into account, since it is not likely to affect student performance in treated 

schools. Assuming that tutors have the same wage as the average participating 

teacher, the cost is estimated at €11,440 per tutor (€28.6×400). There were 1,360 

tutors hired in the schools covered by the evaluation, adding up to a cost of about 

€15.6 million (€11,440×1,360).  

The program also involved other costs, such as the training of tutors and prin-

cipals, setting up the web-portal, administration, etc., amounting to €15.7 mil-

lion (Skolverket 2016a).37 The grand total cost of the program is, thus, estimated 

to be about €51.2 million (€19.9 + €15.6 + €15.7 million). In all, 646,267 unique 

students were exposed to the program at some point (in the schools covered by 

the evaluation), yielding an average cost per student of about €80 (€51.2 million 

/ 646,267 students). 

 

Benefits 

The major benefit of the Boost for mathematics is the value of the students’ 

improved mathematics performance. We translate the short-run learning effects 

to life-time earning gains using data from the ‘Evaluation-through-follow-up’ 

(ETF) project. The ETF data includes information on, among other things, math-

ematics performance and cognitive abilities in grade 6 for a 10 percent sample 

of cohorts born 1953, 1967, 1977 (5 percent), and 1982. The individuals are 

matched to their earnings records for the 1968–2015 period, making it possible 

to follow the earliest cohort throughout most of their labor market careers. We 

calculate the present value of life-cycle earnings by discounting the real annual 

earnings (including payroll taxes) in the period 1968–2015 at 3 percent (in 2020 

prices). For ease of interpretation, we divide the life-cycle earnings by the mean 

 
37 We assume that the accounting cost corresponds to the value of lost production. 
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(separately by cohort and gender), and the estimates should be interpreted as a 

percentage change associated with 1 SD better mathematics skills.     

Table E1. The life-cycle earnings associated with mathematics skills in grade 6 

Column: (1) (2) (3) (4) (5) (6) 
 
Model: 

 
OLS 

 
OLS 

 
Twin FE 

 
IV 

 
IV 

Twin  
FE-IV 

 Panel A. All in 1953 cohort 

Mathematics test score (SD) 0.086*** 0.076***  0.100*** 0.089***  
 (0.004)  (0.005)   (0.007) (0.007)  
       
Individual controls No Yes  No Yes  
R2 0.047 0.082  0.046 0.081  
Observations 8,090 8,090  8,090 8,090  
       
 Panel B. Twins in 1953–82 cohorts 

Mathematics test score (SD) 0.071*** 0.079*** 0.057*** 0.068*** 0.083** 0.099* 
 (0.017)  (0.019)  (0.027)  (0.028) (0.037) (0.058)  
       
Individual controls No Yes Yes No Yes Yes 
R2 0.057 0.1171 0.680 0.057 0.171 0.680 
Observations 468 468 468 468 468 468 

Note: The table shows the association between the present value of real life-cycle earnings and 

standardized mathematics test scores in grade 6. The present value of life-cycle earnings has 

been obtained by discounting real annual earnings in the period 1968–2015 (in 2020 prices) at 

3 percent. The life-cycle earnings have been divided by the mean in the population (by cohort 

and gender), and the estimates should be interpreted as a percentage change associated with 1 

SD better mathematics skills. All models control for gender and cohort. The individual controls 

are dummy variables for month of birth, indicators for first and second generation immigrant, 

dummy variables for age at immigration, dummy variables for mother’s and father’s highest 

level of education, mother’s and father’s percentile rank mid-age (35–45 years) earnings in lev-

els and squared, and indicator variables for having missing information on mother’s or father’s 

earnings. Columns (4)–(6) attempt to adjust for measurement error using the individual’s logi-

cal-inductive ability in grade 6 as an instrument for mathematics test scores in grade 6. */**/*** 

refers to statistical significance at the 10/5/1 percent level. 

 

Table E1 shows the life-cycle earnings associated with 1 SD higher mathematics 

test score in grade 6. All models control for gender and cohort fixed effects. 

Panel A shows the estimates for individuals born in 1953, for whom we can 

observe earnings for ages 16–62. The first column shows that 1 SD better 
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mathematics performance in grade 6 is associated with about 9 percent higher 

life-cycle earnings. The second column accounts for differences in observed de-

mographic characteristics and family background, which leads to slightly lower 

estimates. Columns 4 and 5 attempt to adjust for measurement error in the ob-

served mathematics scores by using the individual’s logical-inductive ability in 

grade 6 as an instrument. This increases the estimates slightly, and 1 SD better 

test scores is associated with about 9 percent higher discounted real life-cycle 

earnings. 

The ETF-data includes a sample of twins which allows us to also account for 

unobserved family characteristics. Panel B of Table E1 shows the estimates for 

twins born 1953, 1967, 1972, 1977 or 1982, for whom we observe parts of their 

labor market career. Columns 1–2 and 4–5 replicate the models used in Panel A 

for the twin sample. Column 3 shows that the estimates are substantially reduced 

when adding twin FE to the model, which indicates that the association between 

test scores and earnings partly reflects difference in unobserved family back-

ground. An alternative explanation, however, is that the potential bias arising 

from measurement errors in observed test scores is exacerbated when exploiting 

the within-twin variation. This is supported by the results presented in the last 

column, where we use logical-inductive ability as an instrument for mathemat-

ics test scores in an attempt to adjust for attenuation bias. This leads to an asso-

ciation of about 10 percent but it is rather imprecisely estimated. Thus, unob-

served (or observed) family background does not seem to drive much of the 

correlation between test scores and earnings. 

Based on these estimates we assume that the return to 1 SD better mathemat-

ics performance over the life-cycle amounts to 9 percent.38 In our data, the av-

erage real gross life-cycle earnings (including employer contributions), 

 
38 (Öckert 2021) reviews papers attempting to estimate causal effects of educational attainment 

on skills and earnings and finds that, on average, one year of schooling improves test scores by 

about 0.25 SD and earnings by 2.5 percent. This leads to an earnings-to-skill-effects-ratio of 10 

percent.  
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discounted at 3 percent to age 16, for men born 1952–53 is about €900,000 (in 

2020 prices). We arrive at an estimated benefit of the Boost for Mathematics by 

first dividing the reduced form effect for different years of exposure (first col-

umn of Table 2) by the share of treated students (first column of Table B2) and 

then multiplying by the estimated return to test scores (Table E1), the discounted 

life-cycle earnings (discounted back to the age when students are first exposed 

to the program) and, finally, the number of students. This yields an estimated 

benefit of about €1395 million, or about €2,158 per student (€1395 mil-

lion/646,267 students). The benefit-to-cost ratio is about 27.23 (€1395 mil-

lion/€51.2 million), meaning that the program generates €27.23 in savings for 

every €1 spent.  

The calculations suggest that the Boost for Mathematics passes a cost-benefit 

test. It should be stressed, however, that the estimated societal benefits and costs 

are uncertain, and the effectiveness of the program may change under alternative 

assumptions. For instance, we base the benefit calculations only on students 

who have taken the final exams by year 2019, while the results show that test 

scores improve also for students who enter school after program implementa-

tion. Thus, if we were to extrapolate the effects of the program also for future 

incoming cohorts, the benefits of the Boost for Mathematics would increase 

even further. 

On the other hand, our calculations may overstate the productivity gains of 

the program. Some of the estimated return to mathematics skills in Table E1 

could reflect sorting of individuals in the education system – along with the 

corresponding return to schooling – as well as signaling on the labor market. In 

addition, the program could generate general equilibrium effects on the labour 

market, which would dampen the productivity gains. However, even if only half 

of the estimated return to skills is due to improved productivity, the benefit-

cost-ratio would still be more than 13. Thus, also under more restrictive assump-

tions, the Boost for Mathematics appears to be a profitable investment. 

 


