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Abstract

Preschool programs can have lasting impacts on educational and labor market outcomes, but we
have limited knowledge on what skills these programs should target. Executive function skills at
school start are strong predictors of academic success, however, we do not know if preschool
program-induced improvements in executive functions promote academic achievement in primary
school. We combine experimental data with a skill-building model and find that preschool
program-induced improvements in executive functions led to improvements in mathematical and
language skills in primary school. This suggests important dynamic complementarities: Preschool
investments in executive functions increase the effectiveness of primary school investments
promoting mathematical and language skills.
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1. Introduction

Preschool programs can have positive and lasting effects on child development and labor
market productivity (e.g., Berlinski et al., 2008, 2009; Cornelissen et al., 2018; Felfe et al.,
2015; Gray-Lobe et al., 2021; Havnes and Mogstad, 2011; Heckman et al., 2010, 2013). One
challenge in designing these programs is knowing which skills to target. Language, mathematics
and social-emotional skills are strong predictors of long term development (e.g., Duncan et al.,
2007; McClelland et al., 2007; Romano et al., 2010), but this does not necessarily mean that
targeting these capacities in preschool will produce lasting effects. Some of these skills will soon
be mastered anyway when taught in the early years of primary school (Bailey et al., 2020). A
challenge for preschools is to foster skills that are central for children’s capacity to navigate the
transition to formal schooling (Troller-Renfree et al., 2022).

The transition from preschool to primary school often entails a substantial shift in pedagogical
practices from a play-based to a more instruction-based approach. As a result, children face new
demands on their ability to regulate behaviors, such as paying attention and following instructions
(Blair and Diamond, 2008; DiPrete and Jennings, 2012). In addition, they have to form new
friendships, often with less support from teachers scaffolding development of good relationships.
Executive functioning skills (EF-skills) may help children handle these challenges and give them
a better start academically and socially (Blair and Diamond, 2008). EF skills are the cognitive
processes that control behavior and a substantial literature has demonstrated that these skills
are strong predictors of academic and social development in school (e.g., Blair, 2002; Blair and
Razza, 2007).

While there is evidence that early childhood education programs can improve EF-skills
(Diamond and Lee, 2011; Diamond and Ling, 2020), there is only limited evidence on whether
program-induced improvements in EF skills lead to improvements in other skills. The child
development literature (e.g., Bierman et al., 2008; Raver et al., 2011) has identified EF skills as
important mediators of intervention effects on school readiness. However, these studies measured
EF and school readiness skills simultaneously, which sheds limited light on the cross-productivity
of program-induced EF skills.1

We investigate cross-productivities of EF skills by combining high-quality experimental data
from the Agder Project (Rege et al., 2021) with a skill-building model (Cunha and Heckman,
2007). The Agder Project is a nine-month-long intervention in Norway targeting 701 five-year-old
preschool children. Through a randomized controlled trial, Norway’s (relatively) unstructured
pedagogical tradition was compared with a play-based, comprehensive and structured curriculum.
Rege et al. (2021) report a sizable, positive treatment effect on EF skills post-intervention. We
exploit the experimental design to investigate how these preschool program-induced improve-
ments in EF skills led to improvements in mathematical and language skills in first year of
primary school. Our investigation is possible because the Agder Project design uses the same
skills assessments before and after treatment and at the one-year follow-up at the end of first
grade. Our approach follows the decomposition framework in Heckman et al. (2013), which
assumes that treatment-induced changes in measured and unmeasured skills are independent, as
do Berger et al. (2020), Conti et al. (2016), and Kosse et al. (2020).

We find that preschool program-induced improvements in EF skills led to improvements
in mathematical skills and language skills in primary school. This finding suggests a dynamic
complementarity between the preschool curriculum (i.e., an investment in preschool process
quality) and the investments made in primary school (e.g., teacher quality, instructional practices).

1McCoy et al. (2019) is an exception. They investigate the long-term effects of treatment-induced EF skills on
self-reported high school performance.
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Indeed, primary school seems to be more productive in promoting mathematical and language
skills for children who have improved EF skills.

Our article contributes not only to the child development literature discussed above, but
also to the literature concerning the economics of human development (see Heckman and
Mosso, 2014, for a recent survey). This strand of literature regards preschool education as an
investment in skill formation (Blau and Currie, 2006), and considers cross-productivity and
dynamic complementarity to be among the salient features of skill formation models (Cunha
and Heckman, 2007). Typically, researchers study either the effect of early childhood education
programs (e.g., Chor et al., 2016; Currie, 2001; Gormley Jr and Gayer, 2005; Jenkins et al.,
2018) or cross-production of skills (e.g., Cunha and Heckman, 2008; Cunha et al., 2010). Few
studies investigate those relationships jointly, which is unfortunate because doing so can provide
valuable insights into the mechanisms by which differences in skills subsequently emerge (or
disappear) as a result of variations in preschool education.

Some notable exceptions include the following2: Heckman et al. (2013) investigate the
mechanisms by which an early childhood education program, the HighScope Perry Preschool
Program, affected a variety of education, labor market, crime, and health outcomes. They
find that persistent changes in what they refer to as personality skills played a substantial role
in the program’s success. Second, Attanasio et al. (2020) investigate the mechanisms of an
early childhood education program in Colombia. Their findings show that program-induced
gains in cognitive and social-emotional skills are mainly the result of parents changing their
investments. Additionally, they find that cognitive skills cross-produce social-emotional skills.
While Heckman et al. (2013) and Attanasio et al. (2020) investigate the mechanisms of early
childhood interventions, they do not focus on EF skills.

2. Background and Conceptual Framework

This section explains the concepts of self-productivity and dynamic complementarity and
how those concepts form the basis of our hypothesis of cross-productivity. Before we explain
our research hypothesis, let us briefly review what is meant by the term “executive functions”
(or EF skills) and the context within which we test our hypothesis.

2.1. What are Executive Functions?

The term executive function (EF, or cognitive control) refers to a set of interrelated, top-down
processes needed for concentration and thinking (Diamond and Lee, 2011). It is generally agreed
that there are three core EF skills (Diamond, 2013): working memory, inhibitory control (which
overlaps substantially with self-regulation), and cognitive flexibility. Working memory is key
to knowing what to inhibit, while inhibition enables us to focus on specific content (Diamond,
2016), suggesting a reciprocal relationship. Cognitive flexibility, which requires working memory
and inhibitory control, refers to the ability to view things from different perspectives and to think
outside the box. The three core EF skills give rise to the higher-order EF skills of reasoning,
problem-solving, and planning. Inhibition, working memory, and cognitive flexibility are central
to learning, reasoning, problem-solving, and planning (Blair, 2002; Diamond and Lee, 2011), as
well as to the regulation of attention, emotion, and behavior (Rueda et al., 2005). EF skills thus
enable a child to “block” habitual behaviors and execute less familiar behaviors (Matsumoto and
Tanaka, 2004).

2Campbell et al. (2014) and Conti et al. (2016) are also exceptions, but they focus primarily on health behaviors.
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These EF skills— inhibitory control, working memory, and cognitive flexibility —are key
predictors of social and economic success (see, e.g., the review in Diamond and Ling, 2020). For
example, EF skills correlate with academic performance (e.g., Blair, 2002; Blair and Razza, 2007),
social-emotional skills (e.g., Broidy et al., 2003), criminal activity, (e.g., Moffitt et al., 2011;
Nagin and Tremblay, 1999), (risky) health behaviors (e.g., Miller et al., 2011; Moffitt et al., 2011),
and several other socioeconomic outcomes (see, e.g., Diamond and Ling, 2020, pp. 157–160).
So too, EF skills are thought to be foundational for school readiness (Blair, 2002; Blair and
Razza, 2007). It is therefore important to investigate whether preschool education programs can
improve EF skills and whether these program-induced improvements aid children to engage and
benefit from the learning environment provided in primary school. This discussion concerning
EF skills has been presented in narrative rather than formal form. A formal skill-building model
can help clarify the cross-productivity of EF skills.

2.2. A Skill-Building Model

Let S𝑖,𝑡 denote a vector the elements of which represent skills, where 𝑡 (𝑡 = 0, 1, … , 𝑇) indexes
age over the 𝑇 periods of childhood. We assume that these 𝑇 periods cluster in 𝐾 ≤ 𝑇 stages
of development (𝑘 = 1, … , 𝐾). Second, let I𝑖,𝑡 denote a vector representing investments. Child
𝑖 (𝑖 = 1, … , 𝑁) develops skills when environmental influences (as experienced by the child)
interact with skills previously acquired,

S𝑖,𝑡+1 = f𝑘(S𝑖,𝑡, I𝑖,𝑡). (1)

If these environmental influences are enriched, then it is said that an “investment” is made.
One central assumption in the technology of skill formation is “self-productivity.” Self-

productivity encompasses the idea that skills are self-reinforcing and cross-producing. Self-
reinforcement involves skills that are “alike,” whereas cross-production involves skills that are
“unlike.” The following partial derivative formally defines self-productivity:

𝜕S𝑖,𝑡+1

𝜕S𝑖,𝑡
> 0. (2)

The assumed positive relationship between skills at age 𝑡 and age 𝑡 + 1 has two important
implications. First, if skills are self-reinforcing, then investments will not fully depreciate over a
given length of time (all else being equal). Second, if skills are cross-productive, then investments
will produce synergistic effects (all else being equal).That is to say, boosting a cross-productive
skill will also affect other skills, resulting in an effect greater than the effect that would have
resulted from an investment in a skill that is not cross-productive. Having defined self-productivity
and its implications, we next provide some background information relevant for understanding
the context within which we formulate our research hypothesis of cross-productivity.

2.3. Background

We will investigate the cross-productivity of EF skills using high-quality experimental data
from the Agder project implemented in Norwegian preschools. The welfare system in Norway
includes generous social security and family policies. All one-to-five-year-old children are
entitled to receive publicly regulated and subsidized preschool education and care. Preschool
uptake amounts to about 98 percent among five-year-olds, the Agder Project’s target population.
Children start school the year they turn six.
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The social pedagogical tradition characterizes preschool education in Norway. This tradition
emphasizes free play and natural curiosity. As such, it contrasts with school readiness approaches
commonly used in English-speaking countries (OECD, 2006). Research in psychology and edu-
cation suggests that preschool curricula aimed at school readiness are more effective (Clements
and Sarama, 2011; Dillon et al., 2017); consequently, returns on investments in terms of skill
formation may be sub-optimal in Norway’s preschool centers.

This situation motivated the Agder Project, which aimed to foster school readiness and human
potential through playful learning in preschool (Rege et al., 2021). The intervention consisted
of a comprehensive curriculum with various age-appropriate activities aimed at stimulating EF
skills, social competence, mathematical skills, and language skills (Størksen et al., 2018).

Figure 1 shows the Agder Project’s experimental design. In the preschool year 2015/2016,
preschool teachers in the treatment group attended the credit-based university class and, as
part of this training, provided extensive feedback on preschool activities, resulting in revisions
of the curriculum. In August 2016, we assessed children’s EF, mathematical, and language
skills. This assessment is the baseline. The trained preschool teachers subsequently implemented
the structured curriculum with the five-year-olds in the preschool center (in preschool year
2016/2017) and were offered coaching during the implementation phase. Centers in the control
group continued per usual, according to the social pedagogical tradition of free play and natural
curiosity. Immediately following the intervention in June 2017, we assessed the children for
the second time (post-intervention). The follow-up assessment in primary school took place
in March 2018, after the children had started formal schooling. We used the the same skills
assessments before and after treatment and at the one-year follow-up. The preschool teachers in
the control group participated in the credit-based university class and received the intervention
materials in the preschool year 2017/2018, after the participating children had left preschool.

The main findings of the Agder Project can be summarized as follows (see Rege et al., 2021,
for further details). First, the structured curriculum positively affected children’s EF skills post-
intervention. Second, at the follow-up assessment in primary school, children in the control
group appear to have EF skills on par with children in the treatment group. Third, while the
treatment effect on EF skills appears to have faded, children in the treatment group appear to
have significantly better mathematical skills than children in the control group at the follow-up
assessment in primary school.

2.4. Research Hypotheses

The reported evidence in Rege et al. (2021) suggests that the Agder Project’s structured
curriculum improved EF skills by the end of preschool. It may be that treated children who
started primary school with better EF skills developed more mathematical skills, and that this
contributed to the follow-up impact on mathematical skills. We are interested in testing this
hypothesis. Specifically, we test:

Hypothesis.
Preschool program-induced improvements in EF skills lead to improvements in mathematical
and language skills in primary school.

While our hypothesis concerns the cross-productivity of EF skills, support for it might be
indicative of a dynamic complementarity. Assume that EF skills are cross-productive of other
skills in primary school. In the context of this study, the higher levels of EF skills observed at
the start of primary school can be assumed to have resulted from an investment in preschool.
Investments made in primary school may complement EF skills in producing other skills. If so,
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Figure 1. Experimental Design of the Agder Project

then a dynamic complementarity exists because current investments (i.e., those made in primary
school) are becoming more effective at producing other future skills, thanks to investments
made in the past (i.e., those made in preschool). The mechanism underlying such a dynamic
complementarity would then be the more advanced EF skills at the start of primary school.
Evidence on such dynamic complementarities can inform public policy and the design of
preschool education programs to ensure that all children are ready to learn at school entry.

3. Data

During each assessment wave (i.e., baseline 2016, post-intervention 2017, and the follow-
up 2018), testers, who were trained, certified, and blind to treatment status, administered six
tests: (1) the Ani Banani Math Test; (2) the Norwegian Vocabulary Test; (3) a Blending Test
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measuring phonological awareness; (4) the Hearts and Flowers Test; (5) the Head-Toes-Knees-
Shoulders Test; and (6) the Forward and Backward Digit Span Test. The Ani Banani Math Test
is designed to measure mathematical skills. Performance on the Norwegian Vocabulary Test and
the Blending Test reflect language skills. Finally, performance on the Forward and Backward
Digit Span Test, the Hearts and Flowers Test, and the Head-Toes-Knees-Shoulders Test provides
an indication of the EF skills. We provide further details about each test below. We matched
the Agder Project’s assessment data to Statistics Norway’s registry data, providing data on the
child’s sex, birth month, the parent’s education, income, and whether at least one of the parents
is a non-Western immigrant. In Online Appendix A.1, we show descriptives and use the baseline
and predetermined variables to conduct balance tests. There has been relatively little attrition,
and very few observations are missing (see Online Appendix A.1).

3.1. Mathematics

We used the Ani BananiMath Test to assess mathematical skills (Størksen andMosvold, 2013),
selecting 11 out of the 18 items. We dropped two items because almost all children answered
them correctly. During the third assessment wave, technical problems with the tablet computer
application caused another five items to become unusable. We omit these five items in each
assessment wave to maintain consistency with Rege et al. (2021). During the Ani Banani Math
Test, testers asked children to help the monkey Ani Banani with such tasks as counting bananas
or setting a table with the correct number of plates. The test takes about ten minutes to complete.
ten Braak and Størksen (2021) confirm (i) good concurrent validity, (ii) good discriminant
validity when contrasted with measures of EF skills and language, and (iii) predictive validity
for mathematics achievement five years later.

3.2. Language

We used the Norwegian Vocabulary Test (Størksen et al., 2013) and a Blending Test to assess
early language skills. During the Norwegian Vocabulary Test, pictures appeared on the tablet
computer, and the tester would then ask the child to identify the picture. Children received a
point for each correct answer, with a total of 20 possible points.

The Blending Test measures phonological awareness. Testers presented a target word with its
phonemes and asked the children to select the corresponding picture from four appearing on
the tablet computer. Each correct response earned children one point, with a total of 12 possible
points. While the Blending Test theoretically reflects language skills, it may be a weak test in
practice, since it was originally designed for pedagogical rather than research purposes. The
Blending Test simply assesses whether or not children can read, so the distribution of the sum
of items is not normal. By contrast, measurement instruments such as the Head-Toes-Knees-
Shoulders Test are designed and validated specifically for research purposes (McClelland et al.,
2007, 2014).

3.3. Executive Functions

The first measure of EF skills is the Hearts and Flowers Test (Davidson et al., 2006), which
assesses inhibitory control and cognitive flexibility using tablet computers. The children were
instructed to press a key on the same side as the stimulus when they saw a heart and on the
opposite side when the stimulus was a flower. The child received a point for each correctly
pressed key. The test consisted of 60 stimuli.
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The second measure is the Head-Toes-Knees-Shoulders Test (McClelland et al., 2014), which
integrates inhibitory control, cognitive flexibility, and working memory demands into a self-
regulation task. The test consists of three blocks with ten items per block. For each item, children
received two points when they did the task correctly, one point when they carried out an incorrect
movement but ended with a correct response, and zero points for incorrect responses. McClelland
et al. (2014) report the psychometric properties of this test. The test relates to inhibition, working
memory, and cognitive flexibility when it comes to construct validity. Furthermore, the test
predicts academic achievement, particularly from kindergarten to first grade (Lenes et al., 2020).

The last measure is the Forward and Backward Digit Span Test, a component of the Wechsler
Intelligence Scale for Children (Wechsler, 1991). The children were asked to listen to a sequence
of digits voiced by the tester, then to repeat back the sequence of digits. The forward digit span
test simply assesses short-term (auditory) memory, as children are not required to manipulate the
information. By contrast, the backward digit span test measures the child’s ability to manipulate
verbal information in temporary storage (i.e., working memory). The total score is the sum of
the combined forward and backward digit span tests and reflects the total number of correctly
repeated digit sequences.

4. Empirical Strategy

We first explain how differences between treated and non-treated children in primary school
can be decomposed into preschool program-induced improvements. This decomposition closely
follows Heckman et al. (2013). Since the six tests are measured with error, we next specify
measurement models. We present further details concerning these measurement models (and
their identification) in Online Appendix A.2. The last section describes our multi-step estimation
procedure.

4.1. A Linear Framework for Decomposing Treatment Effects

We consider a linear-in-parameters production function. We assume that the first stage of
development extends from August 2016 (age 𝑡) to June 2017 (age 𝑡 + 1) and that the second
developmental stage extends from June 2017 (age 𝑡 + 1) to March 2018 (age 𝑡 + 2). It follows
from Equation (1) that the parameters are invariant within these stages with respect to time.

Let 𝑑 index treatment assignment so that 𝑑 = 1 if a child attends a treated preschool center
and 𝑑 = 0 otherwise, 𝑑 ∈ {0, 1}. Because of our linear-in-parameters assumption, we can write
the first developmental stage,

S𝑑,𝑖,𝑡+1 = a𝑑 + BS𝑑,𝑖 + CX𝑑,𝑖 + w𝑑,𝑖,𝑡+1 (3)

In Equation (3), S𝑑,𝑖,𝑡+1 denotes a 𝐻-dimensional vector representing the counterfactual skill
set at age 𝑡 + 1 (i.e., post-intervention, June 2017). Second, a𝑑 is a 𝐻-dimensional vector with
scalar intercept parameters. Third, B is (𝐻, 𝐻)-dimensional matrix of scalar parameters that
characterize the extent to which skills acquired at age 𝑡 (i.e., baseline, August 2016) are self-
productive. The parameters on the diagonal measure how skills reinforce themselves, and the
off-diagonal parameters measure how skills cross-produce each other over the period from
August 2016 to June 2017. Fourth, C is a (𝐻, 𝑃)-dimensional matrix with scalar parameters
measuring how child and parental characteristics plus randomization-block indicators affect skill
formation. The last term, w𝑑,𝑖,𝑡+1 is a 𝐻-dimensional vector representing idiosyncratic, zero
mean shocks.
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Since treatment assignment is random (Rege et al., 2021), we know, by definition, that observed
(i.e., S𝑑,𝑖,𝑡,X𝑑,𝑖) and unobserved (i.e., w𝑑,𝑖,𝑡+1) variables balance in expectation. It follows, then,
that the mean difference,E(S1,𝑖,𝑡+1−S0,𝑖,𝑡+1) = a1−a0, identifies program-induced improvements
in skills.3

The second developmental stage is different. First, the program may have improved variables
we did not measure. Second, the program may have changed the extent to which skills acquired
at age 𝑡 are self-productive (i.e., B = B𝑑). Third, the program may have changed the extent to
which child and parental characteristics affect skill formation (i.e., C = C𝑑). Let U𝑑,𝑖,𝑡+1 denote
a 𝑅-dimensional vector with unmeasured variables affected by the structured curriculum and
let B̃𝑑 denote the (𝐻, 𝑅)-dimensional matrix with scalar parameters that measure the effect of
unmeasured variables on measured skills. For the second developmental stage, we can then write:

S𝑑,𝑖,𝑡+2 = a𝑑 + B𝑑S𝑑,𝑖,𝑡+1 + C𝑑X𝑑,𝑖 + B̃𝑑U𝑑,𝑖,𝑡+1 + w𝑑,𝑖,𝑡+2. (4)

To simplify the decomposition, we assume that B1 = B0 and C1 = C0. The treatment affected
skills in primary school, but not self-productivity or the effect of child and parental characteristics.
Parenthetically, we test and fail to reject this hypothesis. For details on the intuition of this test,
see Heckman et al. (2013). Thus, we proceed by writing B𝑑 = B and C𝑑 = C. We rewrite
Equation (4) as follows:

S𝑑,𝑖,𝑡+2 = ã𝑑 + BS𝑑,𝑖,𝑡+1 + CX𝑑,𝑖 + w̃𝑑,𝑖,𝑡+2, (5)

where we defined ã𝑑 = a𝑑 + B̃𝑑E(U𝑑,𝑖,𝑡+1) as the new 𝐻-dimensional vector with intercepts and
w̃𝑑,𝑖,𝑡+2 = w𝑑,𝑖,𝑡+2 + B̃𝑑[U𝑑,𝑖,𝑡+1 − E(U𝑑,𝑖,𝑡+1)] as the new 𝐻-dimensional vector with random
zero mean shocks.

If we further assume that program-induced increments in measured and unmeasured skills
are (statistically) independent conditional on the child and parental characteristics for the no-
treatment equations, then we can identify treatment effects owing to measured skills from the
difference in expectations (for further details, see Heckman et al., 2013, pp. 2060–2063),

Follow-Up
Treatment Effect

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞E(S1,𝑖,𝑡+2 − S0,𝑖,𝑡+2) =

Contribution of
Unmeasured
Variables

⏞⏞⏞(ã1 − ã0) +

Contribution of
Measured Variables

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞BE(S1,𝑖,𝑡+1 − S0,𝑖,𝑡+1) (6)

Thus, for the present decomposition, we maintain the same identifying assumption as Heckman
et al. (2013), Berger et al. (2020), Conti et al. (2016), and Kosse et al. (2020) concerning the
independence of measured and unmeasured skills.

4.2. Specifying a Linear Measurement Model

We specify a measurement model that addresses (classical) measurement error and weighs
each test score based on its level of informativeness regarding the skill it manifests. Online
Appendix A.2 presents results based on a simple arithmetic average.

Our measurement model defines observed test scores (i.e., manifest variables) as a function
of unobserved skills (i.e., common factors) and other latent influences (i.e., unique factors).
Formally, let Mℎ,𝑑,𝑖,𝑡 denote a 𝐿ℎ-dimensional vector with (observed) manifest variables in
which skill ℎ manifests at age 𝑡. Since we observe the same manifest variables in each period,

3In Online Appendix A.1, we report the results of a balance test.
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we omit a time subscript for 𝐿ℎ. We assume that the manifest variables are additively separable
in the common factors they represent. It follows, then, that we can write the following linear
system of measurement models:

Mℎ,𝑑,𝑖,𝑡 = 𝜇𝜇𝜇ℎ,𝑡 + 𝜆𝜆𝜆ℎ,𝑡Sℎ,𝑑,𝑖,𝑡 + 𝜁𝜁𝜁ℎ,𝑑,𝑖,𝑡. (7)

In Equation (7), 𝜇𝜇𝜇ℎ,𝑡 denotes a 𝐿ℎ-dimensional vector of intercepts. Furthermore, 𝜆𝜆𝜆ℎ,𝑡 denotes a
𝐿ℎ-dimensional vector of factor loadings. These factor loadings weigh each manifest variable
based on their informativeness concerning the common factor, Sℎ,𝑑,𝑖,𝑡. Lastly, 𝜁𝜁𝜁ℎ,𝑑,𝑖,𝑡 is a 𝐿ℎ-
dimensional vector with unique factors.

Since none of the right-hand-side variables in Equation (7) are observable, there is an inherent
identification problem. First, we require some normalization to set a scale and location for the
factors. We normalize one of the factor loadings (say the first) to one to set a scale. To set
the location, we normalize the mean of the common factor to zero. Second, we assume (1)
independence between the common and unique factors and (2) independence between the unique
factors, conditional on the common factor. We also assume that the unique factors are independent
across children. If the measures are continuous, then these assumptions and normalizations are
sufficient for identifying the measurement model in Equation (7) (Anderson and Rubin, 1956).

We can identify the factor loadings from the ratio of covariances. With the factor loadings
identified, we can (nonparametrically) identify the distribution of the factors by applying Kot-
larski’s lemma (see Lemma 1, Remark 4, and Remark 5 Kotlarski, 1967, pp. 70–73). However,
these identification results no longer hold when the manifest variables are categorical (e.g.,
ordinal, dichotomous). In those cases, we assume a known distribution for the unique factors. We
also require further normalizations since the variances in polychoric (or tetrachoric) correlation
matrices are redundant. We normalize the unique factor variances to unity to achieve (local)
identification. Online Appendix A.2 provides further notes on identification.

A final consideration is the scale of the common factor. We anchor the scale of the common
factor in the scale of one of the tests. We anchor mathematical skills in item 15 of the Ani Banani
Math Test. Item 15 asks each child to copy a pattern appearing on the tablet computer. For EF
skills, we use the Forward and Backward Digit Span Test. The score on this test represents the
total number of correctly repeated number sequences. Lastly, we anchor language in the Blending
Test. The score on this test is the total number of correctly chosen alternatives from four pictures.

4.3. Estimation Procedure

We use a multi-step estimation algorithm, following Heckman et al. (2013, p. 2066). In the
first step, we estimate the measurement models for EF, mathematical, and language skills (see
Online Appendix A.3). In the second step, we predict (Bartlett) factor scores (Bartlett, 1937;
Thomson, 1938). The third step estimates the models outlined in Section 4.1 using the predicted
factor scores. We apply Croon’s correction method in the last step (Croon, 2002). The intuition
behind Croon’s correction method is to use our knowledge of the common factor variance and
unique factor variance (from the first step) to adjust the estimates for prediction error. See Online
Appendix A.3 for details. We assume data are missing at random, to address the issue of missing
data, and estimate the models using full information parametric maximum likelihood (Anderson,
1957). See Online Appendix A.1 for details on missingness. We assume a normal distribution
for the error terms. Note that we do not require this assumption for identification.

After applying this correction, the standard errors are incorrect. We apply a clustered wild
residual bootstrap procedure. We draw 1,000 bootstrap samples from the original data and apply
the multi-step estimation algorithm to each pseudo-sample. We cluster and re-sample at the

10



(randomization) block level to ensure that each bootstrap sample includes both treated and
non-treated children. Lastly, we use the “true” variance, not the variance of the predicted factor
score, which is biased, to standardize the interpretation of the parameters.

5. Results

We first present the parameter estimates of self-reinforcement and cross-production for both
stages of development. Then, we discuss the post-intervention and follow-up treatment effects.
Lastly, we discuss how the follow-up treatment effect results from program-induced improvements
in EF, mathematical, language, and unmeasured skills post-intervention.

Table 1 reports the self-reinforcement and cross-production parameter estimates and standard
errors. The results suggest the following: First, EF and mathematical skills show strong persis-
tence in both stages of development (the diagonal cells). In our preferred model specification
(i.e., the model with control variables), we estimate an auto-regressive parameter of 0.774 for
EF skills and 0.663 for mathematical skills (both statistically significant at the one percent level)
in developmental stage 1. In developmental stage 2, we find a similar level of persistence for
mathematical skills, namely 0.635, but the persistence of EF skills increases to 0.943 (both
statistically significant at the one percent level). High persistence implies that (effective) invest-
ments depreciate more slowly. Second, we observe that skills are cross-productive in the first
development stage, particularly EF and mathematical skills. In the second developmental stage,
we observe that EF skills remain cross-productive. By contrast, mathematical skills promote
only EF skills, and language skills do not seem to boost either EF or mathematical skills. These
findings align with the studies that have determined that EF skills predict success in school (Blair,
2002, 2006; Blair and Raver, 2015; Blair and Razza, 2007).

Table 2, Panel A, reports the parameter estimates and standard errors associated with the
post-intervention and follow-up treatment effects. The results in Panel A suggest the following:
Consistent with Rege et al. (2021), children develop more EF skills because they have experienced
the structured curriculum. Treated children have about a 0.176 standard-deviation-higher level of
EF skills than non-treated children (statistically significant at the one percent level). Furthermore,
there is suggestive evidence that the structured curriculum boosted the mathematical skills of
treated children by the end of preschool. However, we cannot rule out the possibility that this
estimate occurred by chance at the conventional cut-off of five percent. Panel A further shows
that language skills and EF skills differ in favor of treated children in primary school, but these
differences are imprecisely estimated, so we cannot assume a difference at the conventional cut-off
of five percent. We do observe positive and statistically significant differences in favor of treated
children for mathematical skills in primary school, however. The follow-up treatment effect on
mathematical skills implies that treated children have about a 0.198 standard deviation higher
level of mathematical skill because they experienced the structured curriculum in preschool
(statistically significant at the five percent level). Online Appendix A.3 presents results that do
not account for measurement error (except through simple averaging). We find point estimates
(and levels of precision) of the post-intervention and follow-up treatment effects even closer to
those reported in Rege et al. (2021).

Table 2, Panel B, decomposes the follow-up treatment effect into measured and unmeasured
variables. In brackets, we report the relative contributions of these variables. We calculate these
relative contributions using absolute values. It may appear counter-intuitive to decompose the
follow-up treatment effect on EF skills and language skills, since there is no significant treatment
impact on these measures. Note, however, that the follow-up treatment effect captures total
differences between treated and nontreated children. There could be unmeasured variables that
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Table 1. Self-Reinforcement and Cross-Production of Skills

Mathematics Language EFs

(1) (2) (3) (4) (5) (6)

Panel A: Developmental Stage 1 (2016 - 2017)

EFs 0.393 0.363 0.148 0.167 0.785 0.774
(0.061) (0.052) (0.061) (0.065) (0.056) (0.045)

Mathematics 0.691 0.663 0.292 0.293 0.348 0.339
(0.034) (0.039) (0.059) (0.065) (0.056) (0.060)

Language 0.074 0.090 0.279 0.264 0.115 0.113
(0.040) (0.042) (0.059) (0.061) (0.044) (0.046)

Panel B: Developmental Stage 2 (2017 - 2018)

EFs 0.390 0.424 0.355 0.304 0.966 0.943
(0.054) (0.052) (0.059) (0.057) (0.066) (0.065)

Mathematics 0.668 0.635 0.049 0.081 0.247 0.261
(0.052) (0.057) (0.070) (0.065) (0.052) (0.051)

Language 0.021 0.043 0.243 0.215 −0.018 −0.029
(0.040) (0.043) (0.055) (0.050) (0.045) (0.041)

Control Variables No Yes No Yes No Yes

Notes. This table reports the self-productivity parameter estimates for the first developmental stage (Panel A) and
the second (Panel B). The columns denote the dependent variables, and the rows denote the independent variables.
Consider the first row (i.e., EF skills) in Panel A; the reported results measure the effect of EF skills measured at
baseline (2016) on mathematical skills (Column 1), language skills (Column 3), and EFs (Column 5) measured
post-intervention (2017). Columns (2), (4), and (6) differ from Columns (1), (3), and (5). Consequently, the table
reports estimates from twelve models. We include the following control variables: child sex, birth month, whether
or not at least one of the parents is a non-Western immigrant, parental education, family income, an indicator for
late parental consent, and randomization-block indicators. All of the reported parameter estimates are given in
standard deviations. We standardize the parameter estimates using the “true” variance, not the predicted variance.
We present randomization-block clustered standard errors in parentheses. Standard errors are computed using a wild
residual bootstrap procedure (1,000 bootstrap samples). All models are estimated with full-information maximum
likelihood (total observations 701). Online Appendix A.1 provides an overview of missingness.

favor non-treated children, thereby reducing the estimate of the total difference. Alternatively,
the total difference might be noisier (i.e., less precisely estimated) because its standard error is
based on a linear combination of parameter estimates, which is generally more imprecise than of
any single parameter estimate. Consequently, while the follow-up treatment effect on EF and
language skills are not statistically significant, it is still worthwhile to estimate the extent to
which preschool program-induced changes in EF skills contribute to the follow-up differences in
language and EF skills.

The findings in Columns (1) through (4) are consistent with our hypothesis. We find that
preschool program-induced improvements in EF skills led to improvements in mathematical
and language skills in primary school. Specifically, because treated children started primary
school with higher EF skills, treated children developed about 0.050 of a standard deviation
more mathematical skills and about 0.037 of a standard deviation more language skills (both
statistically significant at the five percent level). While the total follow-up treatment effect in
language skills was not statistically significant, the extent to which preschool program-induced
changes in EF skills contributed to these follow-up differences is. Taken together, these findings
illustrate the fundamental role of EF skills in learning, which is consistent with the claim that
these skills are beneficial for school success (Diamond and Lee, 2011). In other words, children
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seem to develop more mathematical and language skills because they started primary school
with improved EF skills.

Based on the follow-up treatment effect of EF skills (Columns 5 and 6), it appears that the
impact of the structured curriculum on these skills fades out, as differences between treated and
non-treated children are (statistically) indistinguishable. However, Panel B reveals that such a
conclusion would be inaccurate. Children who started primary school with superior EF skills –
because they experienced the structured curriculum – showed improvement in their EF skills.
Treated children developed 0.105 of a standard deviation more EF skills in primary school
because they started school with better EF skills (statistically significant at the five percent
level). This finding is consistent with the high auto-regressive parameter estimates reported in

Table 2. Treatment Effects and Decomposition

Mathematics Language EFs

(1) (2) (3) (4) (5) (6)

Panel A: Post-Intervention and Follow-Up Treatment Effects

Post-Intervention 0.183 0.173 0.026 0.042 0.168 0.176
(0.099) (0.098) (0.098) (0.104) (0.063) (0.063)

Follow-Up 0.205 0.198 0.006 0.042 0.050 0.069
(0.100) (0.093) (0.111) (0.112) (0.088) (0.087)

Panel B: Decomposition of Follow-Up Treatment Effect

EFs
0.043 0.050 0.041 0.037 0.099 0.105
(0.020) (0.021) (0.018) (0.015) (0.049) (0.047)
[21.1%] [25.3%] [48.2%] [78.7%] [57.9%] [64.4%]

Mathematics
0.031 0.028 0.002 0.004 0.012 0.011
(0.018) (0.017) (0.002) (0.002) (0.001) (0.007)
[15.2%] [14.1%] [2.4%] [8.5%] [7.0%] [6.7%]

Language
0.000 0.001 0.002 0.004 −0.000 −0.000
(0.001) (0.002) (0.006) (0.009) (0.001) (0.002)
[0.0%] [0.5%] [2.4%] [8.5%] [0.0%] [0.0%]

Unmeasured Variables
0.130 0.119 −0.040 −0.002 −0.060 −0.047
(0.096) (0.089) (0.109) (0.110) (0.077) (0.076)
[63.7%] [60.1%] [47.1%] [4.3%] [35.1%] [28.8%]

Control Variables No Yes No Yes No Yes

Notes. This table reports the parameter estimates for the treatment effect decomposition. Panel A reports the
post-intervention treatment effect (i.e., differences between treated and non-treated children post-intervention) and
the follow-up treatment effect (i.e., differences between treated and non-treated children at the follow-up). Panel
B decomposes the follow-up treatment effect in measured and unmeasured variables. The columns denote the de-
pendent variables, and the rows denote the independent variables. Consider the first row (i.e., post-intervention
treatment effect) in Panel A; the reported results measure the effect of the structured curriculum on mathematical
skills (Column 1), language skills (Column 3), and EF skills (Column 5) measured post-intervention (2017). The
table reports estimates from twelve models. We include the following control variables: child sex, birth month,
whether or not at least one of the parents is a non-Western immigrant, parental education, family income, an indica-
tor for late parental consent, and randomization-block indicators. All of the reported parameter estimates are in
standard deviations. We standardize the parameter estimates using the “true” variance, not the predicted variance.
We present randomization-block clustered standard errors in parentheses. Standard errors are computed using a
wild residual bootstrap procedure (1,000 bootstrap samples). In brackets, we report the relative contributions. We
compute these relative contributions by taking the absolute value of the estimate divided by the sum of absolute
values of all estimates multiplied by 100. All models are estimated with full-information maximum likelihood (total
observations 701). Online Appendix A.1 provides an overview of missingness.
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Table 1 and the stable rank order of children this implies. Also, this finding is consistent with
an implication of self-productivity; if skills are self-productive, then investments will not fully
depreciate over a given length of time (all else being equal).

The observation that the follow-up treatment effect in Table 2 is smaller than the effect of
program-induced changes in EF skills on those skills indicates that non-treated children catch
up. The unmeasured variables capture this catch-up mechanism. We do not know precisely what
these unmeasured variables are, however. These unmeasured variables may include unmeasured
skills, but they might also capture interactions between measured skills (which would vary
by treatment assignment) and investments made in primary school (which would not vary by
treatment assignment). These interactions may provide a possible explanation for the catch-up.
In particular, it could be that investments in primary school (e.g., the structure provided by
the teacher through rules and expectations) are compensatory to low levels of EF skills, as is
commonly hypothesized (see, e.g., Bierman et al., 2008; Raver et al., 2011; Riggs et al., 2006).
These investments may have boosted EF skills for non-treated children, who had lower levels
of these skills at the start of primary school, but not the EF skills of treated children, who had
already mastered them by the start of primary school. While plausible, such catch-up does not
imply that the intervention was not effective. The primary school environment may substitute
for lower levels of EF skills, but Table 2 showed that treated children who started school with
higher levels of EF skills developed more mathematical and language skills.

6. Conclusion

We investigated the cross-productivity of EF skills. We combined the experimental variation
with an econometric model of skill formation to estimate the extent to which program-induced
improvements in EF skills caused children to acquire more mathematical and language skills.
We found that children did in fact acquire more mathematical and language skills in primary
school because they started primary school with higher levels of EF skills. These findings hint at
a dynamic complementarity between preschool investments in EF skills and learning in primary
school.
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A.1. Further Notes on the Data

Table A.1.1 and Table A.1.2 present an overview of missingness. Table A.1.1 reports the
missing values in the Agder Project data, and Table A.1.2 shows the missingness in Statistics
Norway’s data. To compute the missing values for the assessment data, we first estimate the
measurement models for each test. Then, we predict the factor scores. We changed the predicted
factor scores to missing if any of the individual items were missing. We then calculate, based
on these predicted factor scores, the number of observed and missing values. This procedure
implies that a single missing item will result in the deletion of the whole row. However, rarely
are only a few items missing. In most cases, either all individual items are missing or none. We
use full information (parametric) maximum likelihood estimation (Anderson, 1957). Even when
data are only missing at random, full-information maximum likelihood uses all available data
and provides valid point estimates.

We regress baseline and predetermined variables on a treatment indicator and randomization-
block fixed effects to test differences in baseline characteristics. We cluster the standard errors at
the randomization-block level. Table A.1.3 reports the results. All baseline characteristics are
balanced, including baseline skills of children. We also allow for multiple hypothesis testing
using the Romano andWolf (2005) procedure implemented in the Stata package “rwolf” (Clarke
et al., 2020). None of the differences are significant.

Figure A.1.1 shows descriptives for the six assessments calculated over all non-missing
observations.We plot the mean and standard deviation across all three assessment waves (baseline
2016, post-intervention 2017, and follow-up 2018). The length of the whiskers signifies one
standard deviation above (and below) the mean. Figure A.1.1 shows a strong mean development
across all six tests from the start of the last year in preschool (i.e., August 2016) to midway
through primary school (i.e., March 2018).

Wematched the assessment data shown in Figure A.1.1 to Statistics Norway’s registry data. As
part of the Agder Project, we collected data on sex, birth month, randomization-block indicators,
and whether we received late parental consent. In Statistics Norway’s registry data, we observe
education levels for the mother and father, income for both parents, and the parent’s country of
origin. Using the information on country of origin, we construct an indicator variable that takes
on the value of one if at least one of the parents is a non-Western immigrant and zero otherwise.
Following Rege et al. (2021), we do not include categories for the birth month or the parents’
education in our model. Instead, we estimate a single parameter for each of these variables.

Table A.1.4 reports descriptive information for the child and parental characteristics. In Table
A.1.4, we observe that about half of the children are female. The median educational attainment
for mothers is the first stage of higher education (undergraduate level), whereas for fathers it is
the upper secondary (final) year. On average, about 15 percent of the sampled children have at
least one parent who is a non-Western immigrant. Mean family income is about NOK 888,416,
63 percent earned by the father (NOK 555,051) and 37 percent by the mother (NOK 330,587).

Table A.1.5 and Table A.1.6 are similar to Table 1 and Table 2, respectively. The difference
is the handling of some of the missing values. As explained in the beginning of this section,
we changed the predicted factor scores to missing if any of the individual items were missing.
Consequently, if we observe two out of three tests for a particular child, the child’s score is
changed to missing. In Table A.1.5 and Table A.1.6, we instead replace missing values based on
the available information. If we observe two out of three tests, then we calculate the predicted
factor scores using the available tests. The results reported in Table A.1.5 and Table A.1.6 do
not qualitatively change our conclusions.
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Table A.1.1. Overview of Missing Values: Agder Project Data

Observed Missing

(1) (2) (3) (4) (5)
Period Obs. Pct. Obs. Pct.

Head-Toes-Knees-Shoulders Test 2016 516 73.6 185 26.4
Hearts and Flowers Test 2017 635 90.6 66 9.4
Digit Span Test 2017 641 91.4 60 8.6
Hearts and Flowers Test 2016 642 91.6 59 8.4
Head-Toes-Knees-Shoulders Test 2017 645 92.0 56 8.0
Blending Test 2017 645 92.0 55 8.0
Ani Banani Math Test 2016 646 92.3 55 7.8
Norwegian Vocabulary Test 2016 647 92.3 54 7.7
Blending Test 2016 648 92.4 53 7.6
Digit Span Test 2016 648 92.4 53 7.6
Digit Span Test 2018 653 93.2 48 6.8
Blending Test 2018 658 93.9 43 6.1
Head-Toes-Knees-Shoulders Test 2016 659 94.0 42 6.0
Norwegian Vocabulary Test 2018 659 94.0 42 6.0
Hearts and Flowers Test 2018 660 94.2 41 5.8
Ani Banani Math Test 2018 661 94.3 40 5.7
Ani Banani Math Test 2016 663 94.6 38 5.4

Notes. This table reports the descriptive frequencies related to observed and missing observations for the assess-
ment data from the Agder Project. For the Head-Toes-Knees-Shoulders Test in 2016, some children did not complete
the last ten items (10 out of a total of 30). The reason for the occurrence of these missing values is that the test stops
after a child misses a certain number of items. At this point, it is unlikely that the child will complete the later items.
For this reason, we replace these ten items with zeros. There is some minor variation in missingness across test items.

Table A.1.2. Overview of Missing Values: Family Characteristics

Observed Missing

(1) (2) (3) (4) (5)
Period Obs. Pct. Obs. Pct.

Education Father 2016 666 95.0 35 5.0
Education Mother 2016 676 96.4 25 3.6
Non-Western Immigrant 2016 682 97.3 19 2.7
Income Father 2016 683 97.4 18 2.6
Income Mother 2016 698 99.6 3 0.4
Birth Month 2016 701 100.0 0 0.0
The Child is Female 2016 701 100.0 0 0.0
Late Parental Consent 2016 701 100.0 0 0.0

Notes. This table reports the descriptive frequencies of observed and missing observations for the data from
Statistics Norway and the child and parental characteristics collected as part of the Agder Project’s data collection.
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Table A.1.3. Balance Test

Treatment Group Control Group Differences

(1) (2) (3) (4) (5) (6) (7)
Obs. Mean Obs. Mean Mean 𝑝-val. RW-𝑝

Panel A: Predetermined Variables
The Child is Female 383 0.48 318 0.52 −0.03 0.44 0.85
Birth Month 383 6.15 318 6.19 −0.02 0.93 0.99
Education Mother 365 4.71 311 4.86 −0.12 0.38 0.85
Education Father 362 4.46 304 4.50 −0.05 0.76 0.99
Non-Western Immigrant 371 0.18 311 0.12 0.05 0.21 0.63
Income Mother (in NOKs) 381 321,391 317 341,640 −20, 495 0.38 0.85
Income Father (in NOKs) 372 560,080 311 549,035 11, 048 0.58 0.92
Panel B: Premeasured Variables
Blending Test 383 2.37 318 2.63 −0.29 0.36 0.85
Head-Toes-Knees-Shoulders 383 21.52 318 19.98 1.47 0.40 0.85
Vocabulary Test 383 9.93 318 9.62 0.30 0.48 0.85
Hearts and Flowers Test 383 26.34 318 25.28 1.08 0.35 0.85
Ani Banani Math Test 368 3.14 318 3.12 −0.00 0.98 0.99
Digit Span Test 359 5.39 289 5.46 −0.06 0.76 0.99

Notes. This table reports the results of a balance test. Column (6) reports p-values (𝑝-val.) for without correction
for multiple hypothesis testing. Column (7) reports 𝑝-values with Romano-Wolf (RW-𝑝) correction for multiple
hypothesis testing. Standard errors are clustered at the randomization-block level.
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Figure A.1.1. Mean Score and Standard Deviation by Assessment Wave
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Table A.1.4. Descriptive Statistics Child and Parental Characteristics

(1) (2) (3)
Mean SD Obs.

The Child is Female 0.49 0.50 701
Birth Month 6.00𝑎 3.19 701
Education Mother 6.00𝑎 1.67 676
Education Father 4.00𝑎 1.59 666
Non-Western Immigrant 0.15 0.36 682
Income Mother (in NOKs) 330,587 213,546 698
Income Father (in NOKs) 555,051 268,071 683
Late Parental Consent 0.19 0.39 701

Notes. This table reports descriptive statistics for the child and parental characteristics. Education comprises
eight categories: (1) primary education; (2) lower secondary education; (3) upper secondary (basic); (4) upper
secondary (final year); (5) post-secondary, not higher education; (6) first stage of higher education, undergraduate
level; (7) first stage of higher education, graduate-level; and (8) second stage of higher education (postgraduate
education).
𝑎 We report the median rather than the mean.

Table A.1.5. Self-Reinforcement and Cross-Production of Skills

(1) (2) (3)
Mathematics Language EFs

Panel A: Developmental Stage 1 (2016 - 2017)

EFs 0.383 0.185 0.769
(0.047) (0.051) (0.055)

Mathematics 0.600 0.281 0.330
(0.046) (0.067) (0.061)

Language 0.076 0.265 0.135
(0.046) (0.060) (0.043)

Panel B: Developmental Stage 2 (2017 - 2018)

EFs 0.414 0.260 0.923
(0.049) (0.052) (0.066)

Mathematics 0.594 0.109 0.268
(0.054) (0.065) (0.058)

Language 0.047 0.222 −0.029
(0.041) (0.050) (0.039)

Control Variables Yes Yes Yes

Notes. This table reports the self-productivity parameter estimates for the first developmental stage (Panel A) and
the second (Panel B). The columns denote the dependent variables, and the rows denote the independent variables.
Consider the first row (i.e., EF skills) in Panel A; the reported results measure the effect of EF skills measured at
baseline (2016) on mathematical skills (Column 1), language skills (Column 3), and EFs (Column 5) measured
post-intervention (2017). Columns (2), (4), and (6) differ from Columns (1), (3), and (5). Consequently, the table
reports estimates from twelve models. We include the following control variables: child sex, birth month, whether
or not at least one of the parents is a non-Western immigrant, parental education, family income, an indicator for
late parental consent, and randomization-block indicators. All of the reported parameter estimates are given in
standard deviations. We standardize the parameter estimates using the “true” variance, not the predicted variance.
We present randomization-block clustered standard errors in parentheses. Standard errors are computed using a wild
residual bootstrap procedure (1,000 bootstrap samples). All models are estimated with full-information maximum
likelihood (total observations 701). Online Appendix A.1 provides an overview of missingness.
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Table A.1.6. Treatment Effects and Decomposition

(1) (2) (3)
Mathematics Language EFs

Panel A: Post-Intervention and Follow-Up Treatment Effects

Post-Intervention 0.176 0.052 0.174
(0.089) (0.103) (0.066)

Follow-Up 0.196 0.042 0.072
(0.097) (0.114) (0.080)

Panel B: Decomposition of Follow-Up Treatment Effect

EFs
0.049 0.031 0.102
(0.020) (0.013) (0.045)
[25.0%] [73.8%] [64.2%]

Mathematics
0.028 0.005 0.013
(0.014) (0.003) (0.007)
[14.3%] [11.9%] [8.2%]

Language
0.001 0.005 −0.001
(0.002) (0.009) (0.002)
[0.5%] [11.9%] [0.6%]

Unmeasured Variables
0.118 0.001 −0.043
(0.093) (0.113) (0.068)
[60.2%] [2.4%] [27.0%]

Control Variables Yes Yes Yes

Notes. This table reports the parameter estimates for the treatment effect decomposition. Panel A reports the
post-intervention treatment effect (i.e., differences between treated and non-treated children post-intervention) and
the follow-up treatment effect (i.e., differences between treated and non-treated children at the follow-up). Panel
B decomposes the follow-up treatment effect in measured and unmeasured variables. The columns denote the de-
pendent variables, and the rows denote the independent variables. Consider the first row (i.e., post-intervention
treatment effect) in Panel A; the reported results measure the effect of the structured curriculum on mathemati-
cal skills (Column 1), language skills (Column 3), and EF skills (Column 5) measured post-intervention (2017).
Columns (2), (4), and (6) differ from Columns (1), (3), and (5). Consequently, the table reports estimates from
twelve models. We include the following control variables: child sex, birth month, whether or not at least one of the
parents is a non-Western immigrant, parental education, family income, an indicator for late parental consent, and
randomization-block indicators. All of the reported parameter estimates are in standard deviations. We standardize
the parameter estimates using the “true” variance, not the predicted variance. We present randomization-block
clustered standard errors in parentheses. Standard errors are computed using a wild residual bootstrap procedure
(1,000 bootstrap samples). In brackets, we report the relative contributions. We compute these relative contributions
by taking the absolute value of the estimate divided by the sum of absolute values of all estimates multiplied by 100.
All models are estimated with full-information maximum likelihood (total observations 701). Online Appendix A.1
provides an overview of missingness.
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A.2. Further Notes on Measurement Models

We first identify a measurement model in which the manifest variables are continuous. We
next consider a measurement model where the manifest variables are categorical (e.g., binary,
ordinal). For identification, we assume, as is the case in our sample, a minimum of two valid
measures (i.e., manifest variables) in each period and a minimum of two periods.

A.2.1. Continuous Scales

Consider the following measurement model,

M𝑙,𝑖,𝑡 = 𝜇𝑙,𝑡 + 𝜆𝑙,𝑡S𝑖,𝑡 + 𝜁𝑙,𝑖,𝑡, (A.2.1)

where M𝑙,𝑖,𝑡 denotes the 𝑙th manifest variable (for 𝑙 = 1, 2) for child 𝑖 (for 𝑖 = 1, … , 𝑁) and
time 𝑡 (for 𝑡 = 0, 1), 𝜇𝑙,𝑡 denotes the intercept, 𝜆𝑙,𝑡 denotes the factor loading, S𝑖,𝑡 denotes the
unobserved skill (i.e., the common factor), and 𝜁𝑙,𝑖,𝑡 denotes the error term (i.e., the unique
factor). We use the following normalizations: To set the location, we normalize the mean
of the the common factor to 0, E(S𝑖,𝑡) = 0 ∀ 𝑡 = 0, 1, where E(⋅) denotes the expectation
operator. To set the scale, we normalize a factor loading (say the first) to 1, 𝜆1,𝑡 = 1 ∀ 𝑡 = 0, 1.
Additionally, we made the following assumptions: (i) Cov(𝜁𝑙,𝑖,𝑡,S𝑖,𝑡) = 0 ∀ 𝑙 = 1, 2, 𝑡 = 0, 1, (ii)
Cov(𝜁𝑙,𝑖,𝑡, 𝜁𝑙′,𝑖,𝑡′|S𝑖,𝑡) = 0 ∀ 𝑙, 𝑙′ = 1, 2, 𝑙 ≠ 𝑙′, 𝑡 = 0, 1, and (iii) the unique factor is independent
across children, where Cov(⋅, ⋅) denotes the covariance operator. Below, we write the unknown
parameters (right-hand side) as a function of known (or identified) parameters (left-hand side).
We can write the following covariances,

Cov(M1,𝑖,𝑡,M1,𝑖,𝑡+1) = Cov(S𝑖,𝑡,S𝑖,𝑡+1), (A.2.2)

Cov(M1,𝑖,𝑡,M2,𝑖,𝑡+1) = 𝜆2,𝑡+1Cov(S𝑖,𝑡,S𝑖,𝑡+1), (A.2.3)

Cov(M2,𝑖,𝑡,M1,𝑖,𝑡+1) = 𝜆2,𝑡Cov(S𝑖,𝑡,S𝑖,𝑡+1). (A.2.4)

We can identify the factor loading, 𝜆2,𝑡+1, by taking the ratio of Equation (A.2.3) to Equation
(A.2.2) and 𝜆2,𝑡 by taking the ratio of Equation (A.2.4) to Equation (A.2.2).

With the factor loadings identified, we can identify the common factor variance from,

Cov(M1,𝑖,𝑡,M2,𝑖,𝑡)
𝜆2,𝑡

=
𝜆2,𝑡Var(S𝑖,𝑡)

𝜆2,𝑡
= Var(S𝑖,𝑡), (A.2.5)

for 𝑡 = 0, 1. With the common factor variance identified, we can identify the unique factor
variance from,

Var(M𝑙,𝑖,𝑡) − (𝜆𝑙,𝑡)2Var(S𝑖,𝑡) = Var(𝜁𝑙,𝑖,𝑡), (A.2.6)

for 𝑡 = 0, 1 and 𝑙 = 1, 2. We next identify the mean structure. We can identify the intercepts
from the expectations,

E(M𝑙,𝑖,𝑡) = 𝜇𝑙,𝑡 + 𝜆𝑙,𝑡E(S𝑖,𝑡) = 𝜇𝑙,𝑡, (A.2.7)

for 𝑡 = 0, 1 and 𝑙 = 1, 2.
With the factor loadings identified, we can (nonparametrically) identify the distribution of

common and unique factors using Kotlarski’s lemma (see Lemma 1 and Remark 4 in Kotlarski,
1967, pp. 70–73). However, these (nonparametric) identification results no longer hold when
measures have an ordinal scale.
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A.2.2. Categorical Scales

Consider again the measurement model in Equation (A.2.11)

M∗
𝑙,𝑖,𝑡 = 𝜇𝑙,𝑡 + 𝜆𝑙,𝑡S𝑖,𝑡 + 𝜁𝑙,𝑖,𝑡, (A.2.8)

but the observed manifest variable, M∗
𝑙,𝑖,𝑡 is now a latent response variable related to observed

(categorical) responses through a threshold function. Consider the Head-Toes-Knees-Shoulders
Test. Per item, children received two points when they performed the task correctly, one point
when they carried out an incorrect move but ended with a correct response, and zero points for
incorrect responses. We can write the following threshold function,

M𝑙,𝑖,𝑡 =
⎧⎪
⎨
⎪⎩

0 if M∗
𝑙,𝑖,𝑡 < 𝜏1,𝑙,𝑡

1 if 𝜏1,𝑙,𝑡 < M∗
𝑙,𝑖,𝑡 < 𝜏2,𝑙,𝑡

2 if 𝜏2,𝑙,𝑡 < M∗
𝑙,𝑖,𝑡

where 𝜏1,𝑙,𝑡 and 𝜏2,𝑙,𝑡 are threshold parameters that provide a mapping from the common factor,
S𝑖,𝑡, and unique factor, 𝜁𝑙,𝑖,𝑡, to the observed ranks.

Consider the case in which we assume the factors are normally distributed. Doing so, we can
write the probabilities associated with a child achieving a particular score as follows:

Pr(M𝑙,𝑖,𝑡 = 0) = Φ
⎛
⎜
⎜
⎝

𝜏1,𝑙,𝑡

√(𝜆𝑙,𝑡)2 + Var(𝜁𝑙,𝑖,𝑡)

⎞
⎟
⎟
⎠

Pr(M𝑙,𝑖,𝑡 = 1) = Φ
⎛
⎜
⎜
⎝

𝜏1,𝑙,𝑡 − 𝜏2,𝑙,𝑡

√(𝜆1,𝑙,𝑡)2 + Var(𝑣𝑙,𝑖,𝑡)

⎞
⎟
⎟
⎠

− Φ
⎛
⎜
⎜
⎝

𝜏1,𝑙,𝑡

√(𝜆𝑙,𝑡)2 + Var(𝜁𝑙,𝑖,𝑡)

⎞
⎟
⎟
⎠

Pr(M𝑙,𝑖,𝑡 = 2) = 1 − Φ
⎛
⎜
⎜
⎝

𝜏1,𝑙,𝑡 − 𝜏2,𝑙,𝑡

√(𝜆𝑙,𝑡)2 + Var(𝜁𝑙,𝑖,𝑡)

⎞
⎟
⎟
⎠

where Φ(⋅) denotes the cumulative normal distribution.
Since variances are redundant in polychoric and tetrachoric correlation matrices, we require

additional normalizations as there would be 13 unknowns and only 10 knowns. If we additionally
normalize the unique factor variance to 1, Var(𝜁𝑙,𝑖,𝑡) = 1 ∀ 𝑙 = 1, 2, 𝑡 = 0, 1, we can establish
(local) identification. See, for example, Skrondal and Rabe-Hesketh (2004, pp. 135–158). We
can use our known and unknown parameters to demonstrate the local identification. Let 𝜗𝜗𝜗 denote
the parameter vector with unknown parameters and let m(𝜗𝜗𝜗) denote the vector with reduced-
form thresholds and covariances. We can then compute the (10, 13)-dimensional Jacobian,
J(𝜗𝜗𝜗) = 𝜕𝜕𝜕m(𝜗𝜗𝜗)/𝜕𝜕𝜕𝜗𝜗𝜗. The matrix rank of the Jacobian is 9, which is equal to the number of unknown
parameters, so the model is locally identified (if 𝜗𝜗𝜗 is a regular point) (Wald, 1950; Skrondal and
Rabe-Hesketh, 2004).
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A.2.3. Estimating the Measurement Models

Wefirst estimate “lower-level” measurement models (results available on request). Specifically,
we start by estimating a measurement model for the Head-Toes-Knees-Shoulders Test (30 items),
the Hearts and Flowers Test (60 items), the Norwegian Vocabulary Test (20 items) and the
Blending Test (12 items). We then use each estimated measurement model to assign values to
the common factors. Next, we estimate the measurement models for EF skills, mathematical
skills, and language skills using these predicted factor scores. For children’s language skills, we
only have two measures: the Norwegian Vocabulary Test and the Blending Test. Any prediction
error would become part of the error term.

Before we estimated the lower-level measurement models, we had to take a position regard-
ing the distribution and link function. Since we have no prior, we selected a model based on
Akaike’s Information Criterion (AIC: Akaike, 1987) and the Bayesian Information Criterion
(BIC: Schwarz, 1978). We considered (i) a Gaussian distribution and identity link function,
(ii) a binomial (or ordinal) distribution, and (iii) logit link function, and a binomial (ordinal)
distribution and probit link function.

Table A.2.7 presents the AIC and BIC values. In Panel A, we document the AIC and BIC for
the Ani Banani Math Test. We observe that a Gaussian distribution with identity link function
results in a (comparatively) better fit in the first (August 2016) and third (March 2018) assessment
waves.We observe that a binomial distribution with a logit link function fits the second assessment
wave better. However, to maintain consistency in estimating this measurement model, we choose
a Gaussian distribution with an identity link function in each assessment wave. In Panel B, we
document the AIC and BIC for the Head-Toes-Knees-Shoulders Test. We observe that an ordinal
distribution with logit link function results in a better fit in the first (August 2016) and second
(June 2017) assessment waves. In the third wave, a probit link function produces a better fit. We
choose an ordinal distribution with a logit link function in each assessment wave to maintain
consistency. In Panel C, we document the AIC and BIC for the Hearts and Flowers Test.

We observe that a binomial distribution with a logit link function fits each assessment wave
better. Therefore, we use a binomial distribution with a logit link function when estimating
the measurement model for further analysis. In Panel D, we document the AIC and BIC for
the Norwegian Vocabulary Test. We observe that a Gaussian distribution with an identity link
function fits each assessment wave better. Therefore, we use a Gaussian distribution with an
identity link function when estimating the measurement model for further analysis. Lastly, in
Panel E, we document the AIC and BIC for the Blending Test. We observe that a Gaussian
distribution with an identity link function produces a better fit in the first (August 2016) and last
(March 2018) measurement waves. A binomial distribution with a probit link function in the
second wave results in a better fit. We use a Gaussian distribution with an identity link function
in each wave to maintain consistency.

Table A.2.8, Table A.2.9, and Table A.2.10 present the estimates of the measurement models
for EFs, mathematical skills, and language skills, respectively. The Head-Toes-Knees-Shoulders
Test and Hearts and Flowers Test in Table A.2.8 and the Norwegian Vocabulary Test and Blending
Test in Table A.2.10 are the predicted factor scores from the lower-level measurement models.
Table A.2.11 reports the variance-covariance matrix for EF skills, mathematical skills, and
language skills. Table A.2.12 reports the Pearson correlation matrix for EF skills, mathematical
skills, and language skills. These measures of association are based on predicted (Bartlett) factor
scores (Bartlett, 1937; Thomson, 1938).

Lastly, Table A.2.13 and Table A.2.14 report the main results. The difference between Table
A.2.13 and Table A.2.14, compared with Table 1 and Table 2, is that we do not use a measurement
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model. Instead, we standardize the individual tests first, compute a simple arithmetic average,
and standardize again so that the composite has mean zero and standard deviation one. The
results presented in these tables show that we lose a great deal of precision by not accounting
for measurement error. Nonetheless, we find that program-induced improvements in EFs in
preschool lead to improvements in mathematical skills and language skills in primary school
(statistically significant at the ten percent level).
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Table A.2.8. Measurement Model Parameter Estimates: Executive Functions

August 2016 June 2017 March 2018

(1) (2) (3) (4) (5) (6)
𝜆𝑙,0 Var(𝜁𝑙,𝑖,0) 𝜆𝑙,1 Var(𝜁𝑙,𝑖,1) 𝜆𝑙,2 Var(𝜁𝑙,𝑖,2)

Digit Span Test 1 0.60 1 0.53 1 0.60
(0.05) (0.04) (0.05)

Head-Toes-Knees-Shoulders 0.77 0.75 0.66 0.47 0.75 0.63
(0.09) (0.06) (0.07) (0.03) (0.10) (0.05)

Hearts and Flowers Test 0.92 0.59 1.03 0.48 1.14 0.59
(0.10) (0.05) (0.09) (0.04) (0.13) (0.05)

Notes. This table reports the measurement model parameter estimates for children’s EFs. The common factor is
EF skills. The manifest variables are the (Forward/Backward) Digit Span Test, the Head-Toes-Knees-Shoulders Test,
and the Hearts and Flowers Test. We standardized the manifest variables to be mean zero and standard deviation
one. For this reason, we omit the measurement model intercept estimates. We anchor children’s EF skills in the
Digit Span Test. Columns (1), (3), and (5) present factor loading estimates. Columns (2), (4), and (6) present unique
factor variance estimates. We present the Huber-White standard errors in parentheses. All models are estimated
with full-information maximum likelihood (total observations 701). The log-likelihood is ‒7, 313.07.
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Table A.2.9. Measurement Model Parameter Estimates: Mathematical Skills

August 2016 June 2017 March 2018

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Items 𝜇𝑙,0 𝜆𝑙,0 Var(𝜁𝑙,𝑖,0) 𝜇𝑙,1 𝜆𝑙,1 Var(𝜁𝑙,𝑖,1) 𝜇𝑙,2 𝜆𝑙,2 Var(𝜁𝑙,𝑖,2)

1 0.24 1 0.12 0.59 1 0.17 0.88 1 0.09
(0.02) (0.01) (0.02) (0.01) (0.01) (0.01)

2 0.10 0.15 0.09 0.26 0.72 0.15 0.47 2.18 0.20
(0.01) (0.06) (0.01) (0.02) (0.09) (0.01) (0.02) (0.41) (0.01)

3 0.08 0.45 0.06 0.29 1.04 0.13 0.59 3.25 0.13
(0.01) (0.08) (0.01) (0.02) (0.11) (0.01) (0.02) (0.56) (0.01)

4 0.37 0.58 0.21 0.60 0.42 0.23 0.82 0.27 0.15
(0.02) (0.10) (0.01) (0.02) (0.07) (0.01) (0.01) (0.17) (0.01)

5 0.43 0.68 0.22 0.70 0.48 0.20 0.83 0.88 0.13
(0.02) (0.10) (0.01) (0.02) (0.07) (0.01) (0.01) (0.19) (0.01)

6 0.13 0.43 0.11 0.32 0.62 0.19 0.57 1.44 0.22
(0.01) (0.07) (0.01) (0.02) (0.07) (0.01) (0.02) (0.28) (0.01)

7 0.71 0.63 0.18 0.87 0.34 0.11 0.93 0.47 0.06
(0.02) (0.10) (0.01) (0.01) (0.06) (0.01) (0.01) (0.14) (0.01)

8 0.66 0.68 0.20 0.84 0.43 0.12 0.87 0.91 0.14
(0.02) (0.10) (0.01) (0.01) (0.06) (0.01) (0.01) (0.19) (0.01)

9 0.42 0.69 0.22 0.60 0.57 0.22 0.82 1.12 0.14
(0.02) (0.09) (0.01) (0.02) (0.08) (0.01) (0.02) (0.24) (0.01)

10 0.11 0.62 0.08 0.37 1.07 0.15 0.70 2.09 0.16
(0.01) (0.06) (0.01) (0.02) (0.07) (0.01) (0.02) (0.29) (0.01)

11 0.03 0.19 0.03 0.15 0.71 0.09 0.49 3.08 0.15
(0.01) (0.05) (0.01) (0.01) (0.09) (0.01) (0.02) (0.55) (0.01)

Notes. This table reports the measurement model parameter estimates for children’s mathematical skills. The
common factor is a mathematical skill. The manifest variables are the 11 (dichotomous) items presented in the rows.
We anchor children’s mathematical skills in the first item. This item asks children to copy a pattern. Note that the
ordering of items is not the same as the ordering in the original Ani Banani Math Test. Columns (1), (4), and (7)
present the measurement model intercepts. Columns (2), (5), and (8) present the factor loadings. Columns (3), (6),
and (9) present unique factor variance estimates. We present the Huber-White standard errors in parentheses. All
models are estimated with full-information maximum likelihood (total observations 701). The log-likelihood is
‒9, 757.48.
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Table A.2.10. Measurement Model Parameter Estimates: Language Skills

August 2016 June 2017 March 2018

(1) (2) (3) (4) (5) (6)
𝜆𝑙,0 Var(𝜁𝑙,𝑖,0) 𝜆𝑙,1 Var(𝜁𝑙,𝑖,1) 𝜆𝑙,2 Var(𝜁𝑙,𝑖,2)

Blending Test 1 0.96 1 0.87 1 0.85
(0.06) (0.05) (0.05)

Vocabulary Test 3.71 0.23 2.37 0.24 2.48 0.17
(0.69) (0.09) (0.26) (0.05) (0.30) (0.06)

Notes. This table reports the measurement model parameter estimates for children’s language skills. The com-
mon factor is language skills. The manifest variables are the Blending Test and the Norwegian Vocabulary Test.
We standardized the manifest variables to be mean zero and standard deviation one. For this reason, we omit the
measurement model intercept estimates. We anchor children’s language skills in the Blending Test. Columns (1),
(3), and (5) present factor loading estimates. Columns (2), (4), and (6) present unique factor variance estimates. We
present the Huber-White standard errors in parentheses. All models are estimated with full-information maximum
likelihood (total observations 701). The log-likelihood is ‒4, 775.79.

Table A.2.11. Variance-Covariance Matrix Children’s Skills

August 2016 June 2017 March 2018

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1. EF Skills 0.61 0.12 0.07 0.36 0.12 0.08 0.29 0.04 0.07
2. Mathematical Skills 0.12 0.10 0.02 0.11 0.06 0.03 0.10 0.02 0.03
3. Language Skills 0.07 0.02 0.08 0.06 0.02 0.03 0.05 0.01 0.02
4. EF Skills 0.35 0.11 0.06 0.52 0.14 0.11 0.31 0.05 0.07
5. Mathematical Skills 0.12 0.06 0.02 0.14 0.10 0.04 0.11 0.02 0.02
6. Language Skills 0.08 0.03 0.03 0.11 0.04 0.17 0.07 0.01 0.04
7. EF Skills 0.29 0.10 0.05 0.31 0.11 0.07 0.44 0.04 0.05
8. Mathematical Skills 0.04 0.02 0.01 0.05 0.02 0.01 0.04 0.01 0.01
9. Language Skills 0.07 0.03 0.02 0.07 0.02 0.04 0.05 0.01 0.14

Notes. This table reports the variance-covariance matrix for children’s EF skills, mathematical skills, and lan-
guage skills in each of the three assessment waves. We calculate these estimates based on predicted (Bartlett) factor
scores (Bartlett, 1937; Thomson, 1938). The numbers in the columns refer to the numbers in the rows (and the
corresponding skills). For instance, in Panel A, the first row (i.e., (1) EF skills) and the second column (2) present
the covariance between children’s EFs and mathematical skills.
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Table A.2.12. Pearson Correlation Matrix Children’s Skills

August 2016 June 2017 March 2018

(1) (2) (3) (4) (5) (6) (7) (8) (9)

1. EF Skills 1.00 0.49 0.32 0.65 0.50 0.24 0.56 0.44 0.22
2. Mathematical Skills 0.49 1.00 0.21 0.50 0.60 0.23 0.46 0.50 0.22
3. Language Skills 0.32 0.21 1.00 0.28 0.23 0.30 0.26 0.17 0.21
4. EF Skills 0.64 0.50 0.28 1.00 0.61 0.36 0.65 0.61 0.27
5. Mathematical Skills 0.50 0.60 0.23 0.61 1.00 0.31 0.52 0.65 0.20
6. Language Skills 0.24 0.23 0.30 0.36 0.31 1.00 0.26 0.25 0.27
7. EF Skills 0.56 0.46 0.26 0.65 0.52 0.26 1.00 0.54 0.19
8. Mathematical Skills 0.44 0.50 0.17 0.61 0.65 0.25 0.51 1.00 0.19
9. Language Skills 0.22 0.22 0.21 0.27 0.20 0.27 0.19 0.19 1.00

Notes. This table reports the Pearson correlation matrix for children’s EF skills, mathematical skills, and lan-
guage skills in each of the three assessment waves. We calculate these estimates based on predicted (Bartlett) factor
scores (Bartlett, 1937; Thomson, 1938). The numbers in the columns refer to the numbers in the rows (and the
corresponding skills). For instance, in Panel A, the first row (i.e., (1) EF skills) and the second column (2) present
the covariance between children’s EFs and mathematical skills.

Table A.2.13. Self-Reinforcement and Cross-Production of Skills using Arithmetic Averages

Mathematics Language EFs

(1) (2) (3) (4) (5) (6)

Panel A: Developmental Stage 1 (2016 - 2017)

EF 0.219 0.206 0.103 0.114 0.534 0.535
(0.038) (0.038) (0.036) (0.032) (0.043) (0.043)

Mathematics 0.425 0.415 0.112 0.119 0.194 0.196
(0.029) (0.030) (0.041) (0.043) (0.042) (0.043)

Language 0.140 0.145 0.556 0.543 0.079 0.070
(0.040) (0.041) (0.078) (0.043) (0.030) (0.032)

Panel B: Developmental Stage 2 (2017 - 2018)

EFs 0.287 0.296 0.171 0.138 0.568 0.557
(0.034) (0.033) (0.039) (0.033) (0.038) (0.038)

Mathematics 0.426 0.412 0.060 0.083 0.187 0.187
(0.041) (0.043) (0.047) (0.035) (0.044) (0.043)

Language 0.066 0.081 0.543 0.499 0.029 0.025
(0.034) (0.037) (0.035) (0.034) (0.035) (0.033)

Control Variables No Yes No Yes No Yes

Notes. This table reports the self-productivity parameter estimates. The columns denote the dependent variables,
and the rows denote the independent variables. The table reports estimates from twelve models. The control vari-
ables include: child sex, birth month, whether or not at least one of the parents is a non-Western immigrant, parental
education, family income, an indicator for late parental consent, and randomization-block indicators. Bootstrap
(clustered) standard errors in parentheses (1,000 repetitions). All models are estimated with full-information maxi-
mum likelihood (701 obs.). Online Appendix A.1 provides an overview of missingness.
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Table A.2.14. Treatment Effects and Decomposition using Arithmetic Averages

Mathematics Language EFs

(1) (2) (3) (4) (5) (6)

Panel A: Post-Intervention and Follow-Up Treatment Effects

Post-Intervention 0.167 0.152 0.015 0.022 0.108 0.113
(0.091) (0.089) (0.078) (0.077) (0.060) (0.058)

Follow-Up 0.227 0.221 0.010 0.051 0.063 0.071
(0.060) (0.058) (0.089) (0.085) (0.053) (0.055)

Panel B: Decomposition of Total Treatment Effect

EFs
0.031 0.033 0.019 0.016 0.057 0.059
(0.018) (0.017) (0.010) (0.008) (0.036) (0.033)
[13.7%] [14.9%] [27.9%] [30.8%] [50.4%] [56.2%]

Mathematics
0.070 0.062 0.010 0.013 0.031 0.028
(0.039) (0.036) (0.005) (0.007) (0.017) (0.017)
[30.8%] [28.1%] [14.7%] [25.0%] [27.4%] [26.7%]

Language
0.001 0.002 0.010 0.016 0.000 0.001
(0.005) (0.006) (0.043) (0.039) (0.001) (0.002)
[0.4%] [0.9%] [14.7%] [30.8%] [0.0%] [1.0%]

Unmeasured Variables
0.125 0.124 −0.029 0.007 −0.025 −0.017
(0.080) (0.076) (0.083) (0.082) (0.061) (0.063)
[55.1%] [56.1%] [42.6%] [13.5%] [22.1%] [16.2%]

Control Variables No Yes No Yes No Yes

Notes. This table reports the parameter estimates for the treatment effect decomposition. Panel A reports the
post-intervention treatment effect (i.e., differences between treated and non-treated children post-intervention) and
the follow-up treatment effect (i.e., differences between treated and non-treated children at the follow-up). Panel B
decomposes the follow-up treatment effect in measured and unmeasured variables. The columns denote the depen-
dent variables, and the rows denote the independent variables. We include the following control variables: child sex,
birth month, whether or not at least one of the parents is a non-Western immigrant, parental education, family in-
come, an indicator for late parental consent, and randomization-block indicators. Standard errors (in parentheses) are
computed using a wild residual (clustered) bootstrap procedure (1,000 bootstrap samples). In brackets, we report the
relative contributions. We compute these relative contributions by taking the absolute value of the estimate divided
by the sum of absolute values of all estimates multiplied by 100. All models are estimated with full-information
maximum likelihood (total observations 701). Online Appendix A.1 provides an overview of missingness.
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A.3. Further Notes on Croon’s Correction Method

We provide further notes on Croon’s correction method (Croon, 2002) in this appendix. Let,

𝜑ℎ,𝑡 = (𝜆𝜆𝜆′
ℎ,𝑡ΣΣΣ

−1
𝜁𝜁𝜁,ℎ,𝑡𝜆𝜆𝜆ℎ,𝑡)−1𝜆𝜆𝜆′

ℎ,𝑡ΣΣΣ
−1
𝜁𝜁𝜁,ℎ,𝑡,

denote the (Bartlett) factor scoring matrix, where 𝜆𝜆𝜆ℎ,𝑡 is a 𝐿ℎ-dimensional vector with factor
loadings, and ΣΣΣ𝜁𝜁𝜁,ℎ,𝑡 is a (𝐿ℎ, 𝐿ℎ)-dimensional matrix with unique factor variances. We can then
write the factor scores as,

S̃ℎ,𝑖,𝑡 = 𝜑ℎ,𝑡(Mℎ,𝑖,𝑡 − 𝜇𝜇𝜇ℎ,𝑡).

Consider data in which we want to estimate the relationship between skill ℎ and skill 𝑘, ℎ ≠ 𝑟,
using the predicted factor scores,

S̃ℎ,𝑖 = 𝛽0 + 𝛽1S̃𝑟,𝑖 + 𝜀ℎ,𝑖.

We can write,

̂𝛽1 =
Cov(S̃ℎ,𝑖, S̃𝑟,𝑖)

Var(S̃𝑟,𝑖)
.

We can write the covariance, Cov(S̃ℎ,𝑖, S̃𝑟,𝑖), as,

Cov(S̃ℎ,𝑖, S̃𝑟,𝑖) = Cov(𝜑ℎMℎ, 𝜑𝑘M𝑟)
= 𝜑ℎCov(Mℎ,M𝑟)𝜑′

𝑟
= 𝜑ℎCov(𝜆𝜆𝜆ℎSℎ,𝑖 + 𝜁𝜁𝜁ℎ,𝑖, 𝜆𝜆𝜆𝑟S𝑟,𝑖 + 𝜁𝜁𝜁𝑟,𝑖)𝜑′

𝑟
= 𝜑ℎ𝜆𝜆𝜆ℎCov(Sℎ,𝑖 + 𝜁𝜁𝜁ℎ,𝑖,S𝑟,𝑖 + 𝜁𝜁𝜁𝑟,𝑖)𝜆𝜆𝜆′

𝑟𝜑′
𝑟

= 𝜑ℎ𝜆𝜆𝜆ℎCov(Sℎ,𝑖,S𝑟,𝑖)𝜆𝜆𝜆′
𝑟𝜑′

𝑟.

We can write the variance as follows,

Var(S̃𝑟,𝑖) = Var(𝜑𝑟M𝑟)
= 𝜑𝑟Var(M𝑟)𝜑′

𝑟
= 𝜑𝑟Var(𝜆𝜆𝜆𝑟S𝑟,𝑖 + 𝜁𝜁𝜁𝑟,𝑖)𝜑′

𝑟
= 𝜑𝑟𝜆𝜆𝜆𝑟(Var(S𝑟,𝑖) + Var(𝜁𝜁𝜁𝑟,𝑖))𝜆𝜆𝜆′

𝑟𝜑′
𝑟.

It follow, then, that,

̂𝛽1 =
Cov(S̃ℎ,𝑖, S̃𝑟,𝑖)

Var(S̃𝑟,𝑖)
=

𝜑ℎ𝜆𝜆𝜆ℎCov(Sℎ,𝑖,S𝑟,𝑖)𝜆𝜆𝜆′
𝑘𝜑′

𝑟

𝜑𝑟𝜆𝜆𝜆𝑟(Var(S𝑟,𝑖) + Var(𝜁𝜁𝜁𝑟,𝑖))𝜆𝜆𝜆′
𝑟𝜑′

𝑟

= Attenuation Factor ⋅
Cov(Sℎ,𝑖,S𝑟,𝑖)

Var(S𝑟,𝑖)
,

where,

Attenuation Factor =
𝜑ℎ𝜆𝜆𝜆ℎVar(S𝑟,𝑖)𝜆𝜆𝜆′

𝑟𝜑′
𝑟

𝜑𝑟𝜆𝜆𝜆𝑘(Var(S𝑟,𝑖) + Var(𝜁𝜁𝜁𝑟,𝑖))𝜆𝜆𝜆′
𝑟𝜑′

𝑟

Since all terms in the attenuation factor are obtained from estimating the measurement model,
we can divide ̂𝛽1 by the attenuation factor to obtain the corrected parameter estimates.
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