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Abstract

Studies have shown that a lack of adult supervision of school-aged children is associated
with antisocial behavior and poor school performance. To mitigate this, one policy response
is to provide adult supervision through structured, adult-supervised programs offered after
school throughout the academic year. After school programs in Norway are an integrated
part of school, used to extend the school day to a full working day by providing care before
and after school. Participation is voluntary and is subject to fees paid by parents. In the
past decade, increasing attention has been paid to the quality and content of these programs
and the role they can play in integrating children, particularly from immigrant backgrounds.
As a result, the city of Oslo has gradually introduced and expanded an offer of free part time
participation in this program, starting with city districts with high immigrant shares. We
utilize the staggered roll out of this free after-school program to investigate attendance and
learning outcomes for students. Our difference-in-difference estimates suggest that the take-
up was substantial, raising enrollment rates rates from about 70 to 95% in affected schools.
Preliminary results suggest little overall effect of the program on academic performance.
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Introduction

Studies have shown that a lack of adult supervision of school-aged children is associated with

antisocial behavior (Aizer, 2004) and poor school performance (Bettinger et al., 2014). To

mitigate this, one policy response is to provide adult supervision through after school programs

(ASPs). ASPs are structured, adult-supervised programs offered after school throughout the

academic year, as well as during holidays. While there is substantial variation in programs

across countries, they often supervise and facilitate activities such as homework time, social

interaction, snacks, sports and crafts.

Evidence on ASPs is scarce, but existing studies suggests that at-risk students benefit from

ASPs the most (Levine and Zimmerman, 2010; Schmitz, 2022; Felfe and Zierow, 2014) and that

these benefits depend on the quality of the intervention (Kremer et al., 2015). The counterfactual

matters: Children who do not have access to adult supervision at home, gain more from ASPs

(Martínez and Perticará, 2020).

After school programs in Norway are an integrated part of school, used to extend the school

day to a full working day by providing care before and after school. In the past decade, increasing

attention has been paid to the quality and content of these programs and the role they can play in

integrating children, particularly from immigrant backgrounds. As a result, Oslo has gradually

introduced and expanded an offer of free part time participation in this program, starting with

city districts with high immigrant shares. We utilize the staggered roll out to investigate whether

the introduction of the free program (1) led to an increase in attendance and (2) led to increased

learning outcomes for students. Unique registry data allow us to link children to city districts

(and hence treatment status), to their families and to test score records from national tests in

reading and mathematics taken during the autumn following four (possible) years of ASP. This

minimizes attrition and enables a careful analysis of sub-samples after family background. We

expect that the effects of the program will be concentrated among those who were most likely

to be affected by the introduction of the free after school program, including students from low

income families, students with immigrant backgrounds and students with non-working mothers.

The study is pre-registered at OSF (https://osf.io/qdw9e).

Our findings suggest that the take-up was substantial, raising enrollment rates rates from
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about 70 to 95% in affected schools. The results, however, suggest little overall effects of the

program on academic performance, both on average and across subgroups.

Institutional Context and Reform Details

In Norway, the school day for the youngest children typically starts at 8:30 am and ends at

1:30 pm. Before and after the school day, children in 1st to 4th grade may enroll in the ASP,

most often taking place on school grounds. The programs are organized at the municipality

level, and may be run by both private or public providers. This results in varying costs and

content across municipalities, and to some degree also across schools within a municipality.

After school programs are viewed as an important arena for aquiring social skills and and for

enhance language development, particularly among children who speak another language than

Norwegian at home. Most children will attend the ASP, particularly during their first school

years, but the enrollment rate for children from immigrant families has been low.

With a full time slot, a child can ASPs before school, at 7:30 am, and stay from the end

of the school day until 5 pm. In addition, the child can attend the program during all school

holidays, except in July when school is closed for the summer. A half time time slot implies

that the child can stay in the after school program from the end of the school day until 4 pm. In

addition , the child can attend the program two days during school holidays. Payment depends

on family income as many low-income families are eligible for a discount. In 2014/2015, the cost

of a full time slot was about 280 EURO per month for families with a yearly income above 35

000 EURO, 110 EURO for income between 20 000 and 35 000 EURO and 60 EURO for income

below 20 000 EURO. The fee for a half time slot was 50% of a full time slot.

Following an initial trial project including three schools in the school years 2013/14-2015/16,

the city of Oslo gradually expanded the free half time after school program (free ASP), starting

with the most disadvantaged city districts and finally including all of the 15 city districs (102

schools). The roll-out of the program started in the academic year of 2016/2017 in four city

districs (34 schools). Children attending 1st grade were eligible the first school year, 1st-2nd

in 2017/2018, 1st-3rd in 2018/2019 and 1st-4th in 2019/2020 and onwards. In 2017/2018 the

program was expanded to four new city districts (20 schools), with eligibility expansion following
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Table 1: The roll-out of the free after school program across schools

School year 1st grade 2nd grade 3rd grade 4th grade
No Yes No Yes No Yes No Yes

2012/13 102 0 102 0 102 0 102 0
2013/14 100 2 100 2 100 2 100 2
2014/15 99 3 99 3 99 3 99 3
2015/16 99 3 99 3 99 3 99 3
2016/17 68 34 102 3 102 3 102 3
2017/18 48 54 68 34 102 0 102 0
2018/19 37 65 48 54 68 34 102 0
2019/20 0 102 48 54 48 54 68 34
2020/21 0 102 48 54 48 54 48 54

the first grade cohort as they moved through the school system in the same way as the first

expansion. In 2018/2019 two more school districts were included in the program (11 schools), but

without the same exansion to older grade levels, i.e. only first graders were eligible. Similarly,

in 2019/2020, the remaining city districts (37 schools) introduced the program, but only for first

graders. The roll-out by school year and grade level is illustrated in Table 1.

The uptake was substantial in schools with initial low rates of attendance. As illustrated in

Figure 1, enrollement for first graders, measured in October of each year, had a marked increase

for all of Oslo in 2016, the first year of the roll-out, and continued to increase gradually in the

followin years as the program expanded. In 2016, roll-out increased with about 10 percentage

points, from 84% to 94%, and then increased further to about 93% from 2017-2019 before

dropping somewhat in 2020, likely due to the pandemic. Figures 2a-2c for the city districts that

introduced free ASP in 2016/17, 2017/18 and 2018/19 respectively, reflect the same pattern

found in Figure 1. In Figure 2a, we see that enrollement increased in particular in the four city

districs that introduced ASP in 2016/17; Grorud, Alna, Stovner and Søndre Nordstrand. These

are all city districts with a relatively high share of immigrants, and where entrollement in ASP

was initially lower than the municipality average. Enrollment in 2016 increased from 62%-72%

to a remarkable 93%-99%, an increase of about 20-25 percentage points. The next school year,

the program was expanded to include four more city districts; Gamle Oslo, Grunerløkka, Sagene

and Bjerke. For these districts, as seen in Figure 2b, initial enrollment in ASP is higher, and

there is a gradual increase in enrollment occuring from the start of the period, 2009, until the

year before the implementation, 2016. Still, we see a jump in enrollment of 5-10 percentage
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Figure 1: Share of pupils in AKS - entire Oslo, 1st grade
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points in 2017 when free ASP was introduced, with enrollement rates stabalizing around 95%

thereafter. Figure 2c shows enrollement rates for the two city districts that introduced free

ASP in 2018/19; St. Hanshaugen and Frogner. Initial enrollement was even higher in these city

districts, already at more than 95% the year prior to introducing free ASP, with little potential

for further increase as the program was introduced. The remaining city districts introduced free

ASP for first graders in 2019/20.

Together, these figures illustrate that the roll-out was implemented such that city districts

with lower enrollement rates initially, typically city districts with a larger share of low income

families and immigrants, were treated first. Also, the policy was very effective at increasing

enrollment in these early districs relative to later districts where enrollement was already high.

It is important to keep in mind that free half time ASP consists of two different treatments;

changing the counterfactual by bringing kids from other forms of care into formalized ASP, to a

greater extent occuring in early intervention districts, and reducing the cost for families already

using ASP, to a greater extent occuring in later intervention districs.
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Figure 2: Implementation of free half time after school programs across city districs

(a) Implemented in 2016/17
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(b) Implemented in 2017/2018
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(c) Implemented in 2018/2019
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Method

The gradual expansion of free ASP in Oslo implies that a child who started as a first grader

in a treated school the year prior to treatment was not eligible for free ASP at all, whereas a

first grader that enrolled the year after was potentially eligible for four years of the free ASP.

This allows us to implement a difference-in-differences model comparing outcomes of children

starting school just before and after the program was implemented, across city districts that

did and did not implement free ASP. This strategy will yield unbiased estimates of the ASP

if trends in outcomes of children in treated city districts are similar to trends in comparison

districts, if the composition of families stay similar across districts and time and if treatment

effects are homogeneous over time. Our identification strategy mainly relies on a comparison of

the results for children attending schools in districts who introduced free ASP in 2016 and 2017

and school districts that did not introduce free ASP until later.1

Formally this can be expressed by the following difference-in-differences model with two-way

fixed effects:

(1) Yi,t = αi + λt + δDDDi,t + ηX
τ

i + εi,t

where Yi,t is the result from national tests in fifth grade of child i belonging to cohort t.

αi are city district fixed effects2 and λt are cohort fixed effects. Di,t, our variable of interest,
1See Roth et al. (2022) and De Chaisemartin and d’Haultfoeuille (2022), for reviews covering the advances

in the recent different-in-differences literature, including papers by Borusyak et al. (2021), De Chaisemartin and
d’Haultfoeuille (2020), Sun and Abraham (2021), Callaway and Sant’Anna (2021) and Goodman-Bacon (2021)

2We assign children to city districts in the start of the year when they turn 6 years old, i.e. about eight
months before they start school.
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is a dummy variable equal to 1 if child i lives in a city district with free ASP the year they

start school.3 X
τ

i is a vector of covariates measured at year τ, i. e. when the child is age five,

and indicates the socioeconomic characteristics of the individual (gender and birth quarter) and

parental characteristics (whether mother and father is born abroad, mother’s country of origin

and parental education). εi,t is the error term with conditional expectation zero. Standard

errors are clustered at the city district level, accounting for dependency within city district.

The main outcome variables are standardized results on national tests in 5th grade in reading

and mathematics.

The model can also be expressed using an event study specification:

(2) Yi,t = αi + λt +
∑−1

µ=−7 γµDi,t +
∑1

µ=0 δµDi,t + ηX
τ

i + εi,t

where treatment effects are separated into pre-treatment leads (γ) and post-treatment lags

(δ) relative to the year before treatment, the omitted variable in the regression. Finding leads

that are not significantly different from the omitted period lends support to our common trends

assumption. If lags are significantly different from the omitted period, then this suggests effects

of treatment and also shows how treatment effects develop over time. 4

Due to the time between treatment (first grade) and testing (fifth grade), only two treated

cohorts have data available for post-treatment outcomes; the first and second treated cohort from

the first expansion (test year 2020 and 2021) and the first cohort from the second expansion

(test year 2021). For pre-years we use children starting school 2010 and onward. Treatment

for the first two expansions implies that the after school program is free during the first four

school years. We need to pay particular attention to the three pilot schools where the program

was implemented before the roll-out. In the analysis we simply exclude pupils that take their

national test at these schools (the results are robust to this exclusion).

In the period 2006-2016, children in many of the same districts that later were the first to

introduce free ASP had an offer of free part-time child care. In 2016 this became national policy,

but only for low-income families. This is not in itself a challenge for our empirical strategy, but
3For the case with a single treatment time period, the model can be expressed as Yi,t = α+λt+βDi+λ(Di×

Postt) + ηX
τ

i + εi,t where Di is a dummy variable equal to 1 if the child lives in a city district that introduced
free ASP during the time period we study and λtare cohort fixed effects that absorb the post-treatment indicator.
Di × Postt, the variable of interest, is a dummy variable equal to 1 if the child lives in the treatment area and
starts school in or after the year free ASP was introduced.

4This interpretation assumes homogeneous treatment effect profiles, as estimates for one relative period are
potentially contaminated by the effects of other relative time periods in the sample, including the excluded time
period (Sun and Abraham, 2021).
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we need to take this into account when we decide on how many cohorts to include in the pre-

period. We want to secure that there are no potential breaks in the trend assumption, and we

do this by excluding cohorts that were not affected by this policy. For pre-years we therefore

use children starting school 2010/11 and onward.

With multiple periods and variation in treatment timing, heterogeneous treatment effects

may cause biased estimates due to early adopters entering the control group. For our time

window, the worry is the first expansion group (early adopter) becoming a control group for

the second expansion group (later adopter). We investigate the potential for these biases by

presenting the results from an event study and by presenting results from various combinations

of treatment and control group comparisons.5

Data

Sample construction

Our study population is primary school students in Oslo and their families, collected from the

demographic registries of Statistics Norway. We include all children registered in a city district

in Oslo at the 1st of January in the year when they are eligible to start school. Children

are linked to parents and siblings with a unique identifier. For children, we include data on

educational outcomes and information about school district, gender and immigrant background.

For parents, we include information on parental income and educational attainment, as well as

mother’s continent of origin.

The roll-out of the program is linked by school identifiers and year. The data on the roll out

of the free program was collected directly from the municipality of Oslo, and includes information

on treatment status for each school and grade level each year. We include test scores for children

starting school from 2010 and onwards.

Outcome Variables

The main outcome variable is compulsory national tests in the subject reading and mathematics,

taken in the beginning of 5th grade, i.e. the cohort starting school in 2016 is tested in the fall
5This is comparable to creating “clean” 2x2 data sets prior to combining estimates in the stacked regression

approach, see Cengiz et al. (2019); Deshpande and Li (2019); Gormley and Matsa (2011); Baker et al. (2022)
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of 2020. The outcome consists of a continuous variable that measures overall performance as a

scaled score, as well as a categorical variable taking the value 1, 2 or 3 depending on performance.

The tests are developed and validated by experts in test development and psychometrics and

are designed to capture the full range of skills in these subjects. The results are mainly used

to collect information about students’ basic skills and to track school development over time.

Results are conveyed to teachers and parents but have no direct consequence for students apart

from the aim of adapted education. About 96% of all students in Norway take the test; students

with special needs and those following introductory language courses may be exempt.

We show separate estimates reading and mathematics using both the scaled score as well as

a dummy variables for each subject that measures if the individual scores 2 or 3 (and not 1). In

addition to the test scores, we construct dummy variables for whether the child was exempted

from the test.

Control Variables and Sub-sample Stratification

The background characteristics of the children and their families are measured for the year before

the child start school to ensure that they are not endogenous to the treatment. For the child we

construct a dummy taking the value 1 if the child is female, and 0 if male, as well as dummies for

birth quarter. Immigrant background is defined as having two parents born abroad. In addition,

we include a first generation immigrant variable picking up if the child is born abroad as well.

We also construct dummies for mother’s continent of origin. The control for family income is

the average income of the mother and father, in addition to indicators for whether the mother or

father receives welfare benefits. For educational attainment, we construct dummies on whether

the mother/father has finished high school or college, respectively. We study sub-samples by

parental education, immigrant background (mother and father is born abroad) and whether

family income is below 40 % of median family income.

Table 2shows descriptive statistics separately for both treatment groups and for the compar-

ison group. The 2016 treatment group has a higher share of immigrants (0.54) than the 2017

treatment group (0.32) and both are higher than the comparison group (0.13). The share with

an immigrant background from Asia and Africa (mother’s continent of birth) is 0.39 and 0.13 in

the 2016 treatment group, 0.18 and 0.11 in the 2017 treatment group and only 0.07 and 0.04 in
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Table 2: Summary statistics

Treated 2016 Treated 2017 Comparison

Girl 0.49 0.49 0.49

Immigrant 0.54 0.32 0.13

Continent

asia 0,39 0,18 0.07

africa 0,13 0,11 0.04

america_oceania 0,02 0,02 0.02

europe 0,46 0,69 0.87

Parents education

M finished high school 0,56 0,72 0.88

F finished high school 0,56 0,70 0.86

M university 0,32 0,55 0.74

F university 0,30 0,47 0.67

M edu unknown 0,10 0,07 0.03

F edu unknown 0,09 0,08 0.04

the comparison group. Parental education is gradually increasing from one group to the next.

As pointed out earlier, this is expected since the roll-out started with the city districts with the

lowest socioeconomic backgrounds and continued on to the next in line. The identifying strategy

when using difference-in-differences, however, hinges on common trends rather than common

levels as well as composition of families staying similar across treated and non-treated districts.

Trends in Outcomes

We begin with a visual inspection of trends in our outcome variables separately for treatment

and control groups. Figures 3a and 3b show the average national scaled test score for reading

and mathematics, respectively, for cohorts starting first grade from 2010 to 2017, separately for

the 2016 and 2017 treatment groups and the comparison group. Although scores in reading and

mathematics are both higher in comparison than treated districts, as expected, the pattern in

trend is the same for both treatment and control districts for the three years prior to treatment,

2013-2015. The trends are much less stable prior to 2013.

For the 2016 treatment group, there are two post-treatment periods. For both reading

and mathematics, test scores in the first group of treated first graders (2016) relative to the

comparison group do not seem to change, but there is a slight relative increase for the second

group (2017). For the 2017 treatment group, we see an increase for the first group of treated
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Figure 3: Trend in National Test Scores

(a) Reading score, all (b) Math score, all

first graders (2017) relative to the comparison group.

A second observation is the comparison of the two treatment groups in 2016, a comparison

of early and later treated units. As the reform was gradually rolled out to less and less socioeco-

nomically disadvantaged school districts, these are the most comparable in terms of background

characteristics. In both figures we see no sign that scores develop differently for these two groups

in 2016.

However, average effects could conceal important heterogeneity. Specifically, our hypothesis

is that children with immigrant background would be the ones to benefit the most from the

policy. This is both due to their low relative enrollment prior to introducing free ASP, and

because attendance is thought to benefit them especially from exposure to the Norwegian lan-

guage, in which case we may expect to see stronger effects for reading than for mathematics. In

Figures 4a and 4b we therefore look at the same trends for the immigrant population only. The

average scores are somewhat more jumpy in the pre-treatment period than for the population

as a whole.

There does not seem to be any visual evidence of a positive effect on school performance

of free ASP for the first cohort of treated first graders (2016 for the 2016 treatment group), as

the treatment group does not show any growth for treated children relative to the comparison

group. For 2017 there is some sign of an improvement for both treatment groups relative to the

comparison group.

To investigate whether there is some heterogeneity in the distribution of effects, we also look
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Figure 4: Trend in National Test Scores, Immigrants

(a) Reading score, immigrant background (b) Math score, immigrant background

at a specification using an indicator for where reading and mathematics scores are above a lower

threshold, i.e. whether the categorical proficiency level is 2 or 3 rather than 1 (see Figures A.1a

and A.1b for the whole population and Figures A.2a and A.2b for immigrants in the Appendix).

We see that the trends follow each other more closely over the pre-treatment period. There

is still no sign of an effect of free ASP on the first cohort of treated first graders (2016) while

tndhere is a slight relative relative increase in the second year where both treatment groups

(2017) have treated first graders. We also investigate trends for whether students are exempt

from the test (see Figures A.3a and A.3b for the whole population and Figures A.4a and A.4b

for immigrants in the Appendix). Here the trends are more jumpy in the pre-treatment period.

In the post-treatment period, there is a slight decrease in the share exempt in 2016 for the

treatment group relative to the comparison group, followed by a slight increase in 2017.

Results

We next turn to the results from running our model specified in equation (1), presented in Table

3. Outcome variables are scaled scores, normalized to have mean 0 and standard deviation 1 for

the entire time period, proficiency indicator and whether students are exempted from the test, for

both reading and mathematics. We restrict the estimation window to the cohorts starting first

grades in the years 2013-2017, where we observed stable pre-trends across outcomes. In order

to make our results as transparent as possible, particularly in light of the new developments
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in the difference-in-differences literature, we present various combinations of treatment and

control group comparisons. We first estimate equation (1) with the traditional staggered two

way fixed effects design, showing both the aggregate estimate (D2016/2017) and the estimate

for each post-treatment period (D2016 and D2017). Second, since treatment occurred close in

time, we run the estimation as if both treatment groups were treated in the first year (non-

standardized estimation), ensuring that we always compare to the non-treated city-districts.

The first year of treatment is then a combination of treated and non treated cohorts from the

treatment groups, which would reduce our treatment effect, while the second year of treatment

includes the second treated cohort from the 2016 treatment group and the first treated cohort

from the 2017 treatment group, giving us the full treatment effect in the absence of cohort

heterogeneity. Third, we separately compare the 2016 treatment group and the 2017 treatment

groups to the comparison group, again ensuring that we are not using early adopters as a

comparison group for the later adopters. For the former group, we present results for the two

post-treatment periods separately. Finally, we focus on the first year of treatment for the 2016

treatment group, using the 2017 treatment group as a comparison group. Since for the roll-out

was gradually implemented to less and less socioeconomically disadvantaged city districts, these

are potentially the most comparable districts for the first year of treatment.

The results reflect what we observed when looking at trend figures - for most outcomes there

is no measurable effect of introducing free ASP on national tests regardless of specification.

There are a few significant effects, but these are not consistent across specifications. Results

controlling for background characteristics (Appendix Table A.1) and using the entire pre-trend

period (Appendix Table A.2) confirm our results. In particular, we see no significant effects

neither for the two way fixed effect approach nor for the second year of the non-standardized

estimation where we might expect full treatment effects. The one exception is whether students

are exempt from the test where the second treated cohort in the 2016 treatment group seems to

have a negative estimate. This is a positive sign, as it is an indication that more students are

able to take the test, i.e. do not require special needs education or have sufficient knowledge in

Norwegian to complete the test. However, this finding is not consistent across treated cohorts.

As mentioned previously, average effects could conceal important heterogeneity, and we

are particularly interested in whether children with immigrant background benefit from the
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Table 3: Main results

Reading Mathematics

Score Proficiency Exempted Score Proficiency Exempted

Two way fixed effects

D2016/2017 0.014 -0.009 -0.001 0.014 0.004 -0.001

(0.029) (0.008) (0.005) (0.023) (0.008) (0.004)

D2016 0.006 -0.013 0.001 0.016 0.006 0.002

(0.029) (0.009) (0.006) (0.024) (0.012) (0.005)

D2017 0.044 0.005 -0.008+ 0.007 -0.002 -0.009*

(0.045) (0.011) (0.004) (0.035) (0.021) (0.003)

N 33128 33128 34719 33135 33135 35089

Non-standardized estimation

D2016 -0.035 -0.016* 0.003 -0.051+ -0.025 0.002

(0.027) (0.006) (0.005) (0.027) (0.016) (0.005)

D2017 0.045 0.003 -0.004 0.032 0.000 -0.004

(0.046) (0.012) (0.005) (0.031) (0.014) (0.004)

N 33128 33128 34719 33135 33135 35089

2016 treatment group and comparison group

D2016 -0.033 -0.023* 0.002 -0.045 -0.011 0.003

(0.031) (0.009) (0.009) (0.021) (0.018) (0.006)

D2017 0.044 0.005 -0.008+ 0.006 -0.005 -0.009*

(0.047) (0.012) (0.004) (0.036) (0.022) (0.003)

N 25855 25855 26967 25808 25808 27193

2017 treatment group and comparison group

D2017 0.043 -0.002 0.001 0.068* 0.014 0.001

(0.050) (0.016) (0.008) (0.030) (0.010) (0.007)

N 25094 27433 27433 25223 27433 27433

2016 treatment group and 2017 treatment group

D2016 -0.073* -0.023* 0.002 -0.060* -0.023 0.006

(0.019) (0.005) (0.005) (0.023) (0.014) (0.005)

N 15163 15163 16115 15236 15236 16307
Note: Standard errors in parentheses + p<0.10, * p<0.05
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Table 4: Main results - Immigrants

Reading Mathematics

Score Proficiency Exempted Score Proficiency Exempted

Two way fixed effects

D2016/2017 -0.009 -0.026 -0.007 -0.017 -0.013 0.005

(0.031) (0.016) (0.012) (0.041) (0.022) (0.011)

D2016 -0.047 -0.043* -0.011 -0.047 -0.027 0.003

(0.034) (0.018) (0.013) (0.044) (0.023) (0.012)

D2017 -0.010 -0.034+ -0.009 -0.066+ -0.022 0.003

(0.038) (0.016) (0.015) (0.033) (0.028) (0.011)

N 9331 9331 10208 9343 9343 10329

Non-standardized estimation

D2016 -0.098+ -0.061* -0.009 -0.107* -0.045 -0.011

(0.053) (0.024) (0.012) (0.050) (0.032) (0.013)

D2017 0.072+ 0.003 -0.018 -0.006 -0.017 -0.007

(0.035) (0.014) (0.012) (0.039) (0.031) (0.012)

N 9331 9331 10208 9343 9343 10329

2016 treatment group and comparison group

D2016 -0.118+ -0.076* -0.008 -0.109+ -0.042 -0.004

(0.055) (0.024) (0.016) (0.050) (0.033) (0.014)

D2017 0.073+ 0.001 -0.017 -0.013 -0.010 -0.008

(0.034) (0.015) (0.012) (0.039) (0.035) (0.012)

N 6861 6861 7428 6833 6833 7491

2017 treatment group and comparison group

D2017 0.086+ 0.017 -0.017 0.034 -0.015 -0.000

(0.043) (0.018) (0.019) (0.068) (0.034) (0.019)

N 4757 4757 5236 4782 4782 5325

2016 treatment group and 2017 treatment group

D2016 -0.059* -0.017 -0.017 -0.105* -0.041 -0.032*

(0.023) (0.012) (0.010) (0.027) (0.018) (0.009)

N 6173 6173 6797 6207 6207 6868
Note: Standard errors in parentheses + p<0.10, * p<0.05

policy. Results are presented in Table 4 and show little signs of this being the case. Again,

there are a few significant effects in both directions, but these are not consistent across treated

cohorts or specifications. We also separate results by sub-samples using the two way fixed effects

specification (aggregate and decomposed by post-treatment year) by immigrant background and

family income (reported in Appendix Table A.4 and A.5). None of the main estimates are

significant and there does not seem to be a clear pattern of heterogeneity in treatment effects

between subgroups.

Next, we present results for the event study specification in Figure 5 for all children and

Figure 6 for children with immigrant backgrounds. The specification is based on the non-
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Figure 5: Event study estimates of student outcomes, all children

standardized estimation with the cohort prior to treatment, 2015, as the excluded group. The

first year of treatment is then a combination of treated and non treated cohorts from the treat-

ment groups, while the second year of treatment includes the second treated cohort from the

2016 treatment group and the first treated cohort from the 2017 treatment group. Again we

see that the first years in the pre-treatment period do not seem to follow the same trend for

test scores, while the period from 2013 and onwards is more stable. The estimates for test

score and proficiency level slightly drop in the first post-treatment year and increase again in

the second treatment year, but these changes are not significant. Figures A.5 for all children

and A.6 for immigrant children in the appendix present results using the standardized approach

where treatment occurs in year 0 for both groups and -1 is the excluded period, and findings

are consistent.
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Figure 6: Event study estimates of student outcomes, children with immigrant background
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Conclusion

We have studied the roll-out of a free after school program in the municipality of Oslo. In

the first wave, 34 schools were treated, followed by 20 new schools in the second wave. The

take-up was substantial, raising enrollment rates rates from about 70 to 95% in many affected

schools. Using unique registry data that allow us to link children to city districts (and hence

treatment status), to their families and to test score records from national tests in reading and

mathematics, we estimate whether the increase in enrollment in ASP affected learning outcomes

for students. Our results suggest no overall effects of the program on academic performance.

We expected the immigrant population to benefit more from the program, both due to a pre-

program lower enrollment rate and as attendance possibly increased exposure to the Norwegian

language. However, we find little support for enhanced academic performance for children with

an immigrant background.

Former findings suggest that the quality of ASPs contribute to explaining positive effects

(Kremer et al., 2015). The lack of effects on academic performance in our study raises the

question of whether the quality of the program in Oslo is at a level that would lead to increased

academic performance. Norwegian ASPs are more about free play than structured learning

activities, and this may not be sufficient tools if the goal is to impact academic results. However,

increased interaction with school peers could still matter for the social environment in school,

and subsequently for student well-being.

We will continue to add future cohorts to the study, and importantly, to investigate outcomes

related to questionnaires about student well-being and the more general learning and social

environment at the school.
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Appendix

Figure A.1: Trend in National Test Proficiency level, all

(a) Reading proficiency, all children (b) Math proficiency, all children

Figure A.2: Trend in National Test Proficiency level, Immigrant background

(a) Reading proficiency, immigrant background (b) Math proficiency, immigrant background



Figure A.3: Trend in test excemptions, all children

(a) Share exempted from reading test (b) Share exempted from math test

0treatxy201

Figure A.4: Trend in test excemptions, immigrant background

(a) Share excempted from reading test

0

(b) Share excempted from math test



Table A.1: Main results - With covariates

Reading Mathematics

Score Proficiency Exempted Score Proficiency Exempted

Two way fixed effects

D2016/2017 0.006 -0.012 -0.000 0.008 0.002 0.000

(0.027) (0.008) (0.005) (0.021) (0.009) (0.004)

D2016 -0.004 -0.016+ 0.002 0.007 0.003 0.003

(0.027) (0.008) (0.005) (0.023) (0.012) (0.004)

D2017 0.042 0.003 -0.008+ 0.012 -0.001 -0.009*

(0.040) (0.011) (0.004) (0.028) (0.019) (0.004)

N 33128 33128 34719 33135 33135 35089

Non-standardized estimation

D2016 -0.033 -0.015* 0.002 -0.055+ -0.026 0.001

(0.029) (0.007) (0.005) (0.030) (0.016) (0.005)

D2017 0.022 -0.005 -0.001 0.018 -0.006 -0.003

(0.042) (0.012) (0.005) (0.027) (0.013) (0.005)

N 33128 33128 34719 33135 33135 35089

2016 treatment group and comparison group

D2016 -0.029 -0.022* 0.001 -0.043 -0.010 0.002

(0.032) (0.009) (0.008) (0.025) (0.019) (0.006)

D2017 0.039 0.003 -0.008+ 0.009 -0.005 -0.009*

(0.042) (0.012) (0.004) (0.030) (0.020) (0.004)

N 25855 25855 26967 25808 25808 27193

2017 treatment group and comparison group

D2017 0.009 -0.014 0.005 0.041 0.002 0.005

(0.044) (0.014) (0.007) (0.029) (0.010) (0.006)

N 24593 24593 25614 24590 24590 25901

2016 treatment group and 2017 treatment group

D2016 -0.054* -0.017* -0.000 -0.048+ -0.018 0.004

(0.018) (0.005) (0.005) (0.021) (0.015) (0.005)

N 15163 15163 16115 15236 15236 16307
Note: Standard errors in parentheses + p<0.10, * p<0.05



Table A.2: Results - Estimation period 2010-2017

Reading Mathematics

Score Proficiency Exempted Score Proficiency Exempted

Two way fixed effects

D2016/2017 -0.001 -0.017* -0.007 -0.010 -0.006 -0.006+

(0.024) (0.007) (0.005) (0.023) (0.008) (0.003)

D2016 -0.008 -0.020* -0.005 -0.005 -0.003 -0.004

(0.025) (0.008) (0.005) (0.023) (0.011) (0.004)

D2017 0.020 -0.008 -0.013* -0.024 -0.014 -0.013*

(0.040) (0.012) (0.004) (0.037) (0.021) (0.002)

N 51168 51178 53835 51213 51223 54335

Non-standardized estimation

D2016 -0.043* -0.021* -0.006 -0.069* -0.034* -0.007

(0.019) (0.007) (0.005) (0.026) (0.015) (0.005)

D2017 0.036 -0.003 -0.012* 0.014 -0.008 -0.013*

(0.040) (0.012) (0.004) (0.030) (0.015) (0.002)

N 51168 51178 53835 51213 51223 54335

2016 treatment group and comparison group

D2016 -0.051* -0.034* -0.005 -0.068* -0.021 -0.003

(0.021) (0.007) (0.008) (0.020) (0.018) (0.006)

D2017 0.026 -0.006 -0.015* -0.017 -0.015 -0.015*

(0.043) (0.012) (0.003) (0.038) (0.023) (0.002)

N 40304 40310 42145 40276 40282 42463

2017 treatment group and comparison group

D2017 0.036 -0.004 -0.009 0.048 0.003 -0.009+

(0.045) (0.014) (0.008) (0.028) (0.010) (0.004)

N 37754 37764 39439 37778 37788 39812

2016 treatment group and 2017 treatment group

D2016 -0.085* -0.033* -0.009 -0.062* -0.029+ -0.003

(0.012) (0.006) (0.005) (0.021) (0.013) (0.005)

N 25398 25403 27180 25494 25499 27460
Note: Standard errors in parentheses + p<0.10, * p<0.05



Table A.3: Main results - Immigrants with covariates

Reading Mathematics

Score Proficiency Exempted Score Proficiency Exempted

Two way fixed effects

D2016/2017 -0.006 -0.024 -0.008 -0.016 -0.012 0.004

(0.027) (0.015) (0.012) (0.037) (0.021) (0.010)

D2016 -0.036 -0.037* -0.013 -0.039 -0.024 0.001

(0.030) (0.016) (0.013) (0.039) (0.021) (0.011)

D2017 0.009 -0.024 -0.014 -0.044 -0.012 -0.002

(0.033) (0.015) (0.014) (0.028) (0.028) (0.010)

N 14185 14187 15656 14231 14233 15818

Non-standardized estimation

D2016 -0.094+ -0.061* -0.009 -0.117* -0.050 -0.011

(0.049) (0.023) (0.011) (0.047) (0.031) (0.012)

D2017 0.060* -0.002 -0.015 -0.020 -0.022 -0.005

(0.026) (0.014) (0.013) (0.032) (0.033) (0.013)

N 9331 9331 10208 9343 9343 10329

2016 treatment group and comparison group

D2016 -0.106+ -0.072* -0.010 -0.108+ -0.041 -0.006

(0.053) (0.025) (0.016) (0.049) (0.032) (0.014)

D2017 0.069* 0.000 -0.015 -0.015 -0.010 -0.007

(0.024) (0.015) (0.013) (0.031) (0.036) (0.013)

N 6861 6861 7428 6833 6833 7491

2017 treatment group and comparison group

D2017 0.063 0.007 -0.013 0.001 -0.029 0.003

(0.035) (0.018) (0.019) (0.060) (0.034) (0.020)

N 4757 4757 5236 4782 4782 5325

2016 treatment group and 2017 treatment group

D2016 -0.055* -0.016 -0.016 -0.100* -0.039+ -0.030*

(0.022) (0.011) (0.009) (0.026) (0.017) (0.008)

N 6173 6173 6797 6207 6207 6868
Note: Standard errors in parentheses + p<0.10, * p<0.05



Table A.4: Immigrant background

Reading Mathematics

Score Proficiency Exempted Score Proficiency Exempted

Without immigrant background

D2016/2017 0.024 0.007 0.004 0.021 0.015 0.000

(0.037) (0.010) (0.005) (0.027) (0.010) (0.004)

D2016 0.017 0.001 0.006 0.029 0.019 0.003

(0.034) (0.009) (0.005) (0.027) (0.013) (0.003)

D2017 0.050 0.031+ -0.006 -0.010 -0.002 -0.011

(0.060) (0.015) (0.007) (0.051) (0.026) (0.008)

N 23797 23797 24511 23792 23792 24760

With immigrant background

D2016/2017 -0.009 -0.026 -0.007 -0.017 -0.013 0.005

(0.031) (0.016) (0.012) (0.041) (0.022) (0.011)

D2016 -0.020 -0.029 -0.006 -0.018 -0.015 0.006

(0.033) (0.018) (0.012) (0.045) (0.023) (0.011)

D2017 0.048 -0.009 -0.010 -0.011 -0.001 -0.001

(0.036) (0.016) (0.013) (0.036) (0.030) (0.013)

N 9331 9331 10208 9343 9343 10329

Table A.5: Low income

Reading Mathematics

Score Proficiency Exempted Score Proficiency Exempted

Above median family income

D2016/2017 0.033 0.001 0.007 0.033 0.016+ 0.002

(0.034) (0.009) (0.006) (0.025) (0.009) (0.005)

D2016 0.028 -0.000 0.011+ 0.038 0.020* 0.006

(0.032) (0.009) (0.006) (0.022) (0.009) (0.005)

D2017 0.051 0.006 -0.006 0.016 0.002 -0.011*

(0.048) (0.009) (0.004) (0.044) (0.028) (0.003)

N 23324 23331 23944 23295 23302 23944

Below median family income

D2016/2017 -0.026 -0.024 -0.017 -0.020 -0.000 -0.003

(0.038) (0.019) (0.010) (0.034) (0.023) (0.009)

D2016 -0.039 -0.031 -0.017 -0.024 -0.004 -0.002

(0.037) (0.018) (0.011) (0.038) (0.026) (0.009)

D2017 0.053 0.021 -0.018+ 0.005 0.021 -0.003

(0.058) (0.030) (0.009) (0.037) (0.022) (0.010)

N 8193 8193 9073 8244 8244 9216



Figure A.5: Event study estimates of student outcomes, all children



Figure A.6: Event study estimates of student outcomes, children with immigrant background


